17 research outputs found

    Quantizations on the circle and coherent states

    Full text link
    We present a possible construction of coherent states on the unit circle as configuration space. Our approach is based on Borel quantizations on S^1 including the Aharonov-Bohm type quantum description. The coherent states are constructed by Perelomov's method as group related coherent states generated by Weyl operators on the quantum phase space Z x S^1. Because of the duality of canonical coordinates and momenta, i.e. the angular variable and the integers, this formulation can also be interpreted as coherent states over an infinite periodic chain. For the construction we use the analogy with our quantization and coherent states over a finite periodic chain where the quantum phase space was Z_M x Z_M. The coherent states constructed in this work are shown to satisfy the resolution of unity. To compare them with canonical coherent states, also some of their further properties are studied demonstrating similarities as well as substantial differences.Comment: 15 pages, 4 figures, accepted in J. Phys. A: Math. Theor. 45 (2012) for the Special issue on coherent states: mathematical and physical aspect

    Coherent states on the circle

    Full text link
    We present a possible construction of coherent states on the unit circle as configuration space. In our approach the phase space is the product Z x S^1. Because of the duality of canonical coordinates and momenta, i.e. the angular variable and the integers, this formulation can also be interpreted as coherent states over an infinite periodic chain. For the construction we use the analogy with our quantization over a finite periodic chain where the phase space was Z_M x Z_M. Properties of the coherent states constructed in this way are studied and the coherent states are shown to satisfy the resolution of unity.Comment: 7 pages, presented at GROUP28 - "28th International Colloquium on Group Theoretical Methods in Physics", Newcastle upon Tyne, July 2010. Accepted in Journal of Physics Conference Serie

    Feynman's path integral and mutually unbiased bases

    Full text link
    Our previous work on quantum mechanics in Hilbert spaces of finite dimensions N is applied to elucidate the deep meaning of Feynman's path integral pointed out by G. Svetlichny. He speculated that the secret of the Feynman path integral may lie in the property of mutual unbiasedness of temporally proximal bases. We confirm the corresponding property of the short-time propagator by using a specially devised N x N -approximation of quantum mechanics in L^2(R) applied to our finite-dimensional analogue of a free quantum particle.Comment: 12 pages, submitted to Journal of Physics A: Math. Theor., minor correction

    Dihedral symmetry of periodic chain: quantization and coherent states

    Full text link
    Our previous work on quantum kinematics and coherent states over finite configuration spaces is extended: the configuration space is, as before, the cyclic group Z_n of arbitrary order n=2,3,..., but a larger group - the non-Abelian dihedral group D_n - is taken as its symmetry group. The corresponding group related coherent states are constructed and their overcompleteness proved. Our approach based on geometric symmetry can be used as a kinematic framework for matrix methods in quantum chemistry of ring molecules.Comment: 13 pages; minor changes of the tex

    Enhanced quantization on the circle

    Full text link
    We apply the quantization scheme introduced in [arXiv:1204.2870] to a particle on a circle. We find that the quantum action functional restricted to appropriate coherent states can be expressed as the classical action plus â„Ź\hbar-corrections. This result extends the examples presented in the cited paper.Comment: 7 page
    corecore