4 research outputs found
Estimation of regional surface deformation post the 2001 Bhuj earthquake in the Kachchh region, Western India using RADAR interferometry
The key objective of the present study is to estimate the surface displacement and to understand/monitor the active deformation pattern in the Kachchh region post the 2001 Bhuj Earthquake by implementing the Persistent Scatterer Interferometric Synthetic Aperture Radar (PSI) and Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques. We employed the ENVISAT ASAR (15 images), ALOS PALSAR (6 pairs) and SENTINEL-1A (117 images) data sets acquired during the periods 2003–2005, 2007–2009, and 2016–2020 respectively. The PSI results of the Envisat dataset reveals that the Kachchh mainland region has undergone an average surface deformation of ± 22 mm/yr during 2003–2005. The maximum displacement observed from the ALOS PALSAR data sets (Window-1 to 6) during the period 2007–2009 is ∼ ± 1.2 cm. Further, the ground displacement observed from the Sentinel-1A dataset during the period 2016–2020 is ±16 mm/yr for the west-central region and 6 mm/yr uplift and 8 mm/yr subsidence in the eastern Kachchh mainland region. Surprisingly, high rate of deformation is detected towards the Pachham Island, Banni, Rann and the eastern region of the Kachchh after the 2001 Bhuj event. Correlating the results of different data sets, it is concluded that the deformation is high near the vicinity of the fault zones indicating the tectonically active nature of the faults. From the obtained results, we infer that, post the 2001 Bhuj earthquake, the surface displacement in the Kachchh mainland region is escalated till 2009 which is due to continuous aftershock activity and then started declining because of the ongoing seismic settlement. The acquired deformation rates are correlating well with the GPS derived displacement rates. Further, our results will assist in accurately demarcating the extent of the fault zones and also helps in precisely marking the areas undergoing active deformation, which will aid in micro zonation studies, mitigation planning and also for the preparation of an active tectonic map for the region
Evaluation of geomorphic expressions of bedrock Channels in the Western Ghats of southern Kerala, India, through quantitative analysis
Geomorphic expressions embedded within the bedrock channels, originating from the southernmost part of the Western Ghats, India, are quantitatively characterized through well-defined geomorphic indices using digital elevation models (DEM) and geographical information system (GIS) tools. Drainage basin asymmetry (Af), transverse topographic symmetry factor (T), longitudinal profile, stream length gradient index (SL), hypsometric integral and curve (Ihyp), spatial parameters like drainage density (Dd) and dissection index (DI) are used for extraction of information related to the characteristic pattern and behaviour associated with the Karamana river and its two major tributaries. The independent and cumulative analysis of each geomorphic indices indicates adjustment of Karamana river in response to the tectonic activities. Karamana basin, while showing symmetric character as a single unit, exhibits segments of asymmetric nature associated with the terrain tilting and is evidenced from the variable directional oscillation from E, SSE, S, NW and W. Varying characteristics of the longitudinal profiles and abrupt change in the SL index suggest knick points and uplift of the terrain due to tectonic processes. The influence of tectonic process over the stream characteristics is confirmed by identifying higher levels of SL anomalies in unique lithology. The inferences correlate with the low drainage density and high dissection index zones in the region with varying influence of tectonic processes. Though, the Karamana river basin as a single unit shows old age characteristics in the hypsometric analysis and symmetric nature, the longitudinal profile-assisted SL and SL anomaly indices are found to be capable of revealing evidences of differential effects of tectonic activities over the stream characteristics. The deductions are in agreement with field observations on landforms and channel attributes