11 research outputs found

    Development of a linear transient model for stimulation of isolated cardiac cells

    Full text link
    Isolated cardiac cells stimulators design can be aided by numerical tools based on the behavior model. The linear model (RC circuit) is the most straightforward model for describing the electrical membrane cell behavior for an external electrical stimulation: however, an adjustment is necessary to make it competent to describe correctly the different types of excitation variability experimentally observed. A Linear Transient Model is presented, solved by the Finite Element Method

    Magnetocardiography measurements with 4^4He vector optically pumped magnetometers at room temperature

    Full text link
    Accepted Manuscript.International audienceIn this paper, we present a proof of concept study which demonstrates for the first time the possibility to record magnetocardiography (MCG) signals with 4^4He vector optically-pumped magnetometers (OPM) operated in a gradiometer mode. Resulting from a compromise between sensitivity, size and operability in a clinical environment, the developed magnetometers are based on the parametric resonance of helium in zero magnetic field. Sensors are operated at room-temperature and provide a tri-axis vector measurement of the magnetic field. Measured sensitivity is around 210 fT/√Hz in the bandwidth [2 Hz; 300 Hz]. MCG signals from a phantom and two healthy subjects are successfully recorded. Human MCG data obtained with the OPMs are compared to reference electrocardiogram (ECG) recordings: similar heart rates, shapes of the main patterns of the cardiac cycle (P/T waves, QRS complex) and QRS widths are obtained with both techniques
    corecore