9 research outputs found
Erratum: Atom-field dressed states in slow-light waveguide QED [Phys. Rev. A 93, 033833 (2016)]
We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes
Harvesting Multiqubit Entanglement from Ultrastrong Interactions in Circuit Quantum Electrodynamics
We analyze a multi-qubit circuit QED system in the regime where the qubit-photon coupling dominates over the system’s bare energy scales. Under such conditions a manifold of low-energy states with a high degree of entanglement emerges. Here we describe a time-dependent protocol for extracting these quantum correlations and converting them into well-defined multi-partite entangled states of non-interacting qubits. Based on a combination of various ultrastrong-coupling effects the protocol can be operated in a fast and robust manner, while still being consistent with experimental constraints on switching times and typical energy scales encountered in superconducting circuits. Therefore, our scheme can serve as a probe for otherwise inaccessible correlations in strongly-coupled circuit QED systems. It also shows how such correlations can potentially be exploited as a resource for entanglement-based applications
Valley-hybridized gate-tunable 1D exciton confinement in MoSe2
Controlling excitons at the nanoscale in semiconductor materials represents a
formidable challenge in the fields of quantum photonics and optoelectronics.
Achieving this control holds great potential for unlocking strong
exciton-exciton interaction regimes, enabling exciton-based logic operations,
exploring exotic quantum phases of matter, facilitating deterministic
positioning and tuning of quantum emitters, and designing advanced
optoelectronic devices. Monolayers of transition metal dichalcogenides (TMDs)
offer inherent two-dimensional confinement and possess significant binding
energies, making them particularly promising candidates for achieving
electric-field-based confinement of excitons without dissociation. While
previous exciton engineering strategies have predominantly focused on local
strain gradients, the recent emergence of electrically confined states in TMDs
has paved the way for novel approaches. Exploiting the valley degree of freedom
associated with these confined states further broadens the prospects for
exciton engineering. Here, we show electric control of light polarization
emitted from one-dimensional (1D) quantum confined states in MoSe2. By
employing non-uniform in-plane electric fields, we demonstrate the in-situ
tuning of the trapping potential and reveal how gate-tunable
valley-hybridization gives rise to linearly polarized emission from these
localized states. Remarkably, the polarization of the localized states can be
entirely engineered through either the spatial geometry of the 1D confinement
potential or the application of an out-of-plane magnetic field
Exotic interactions mediated by a non-Hermitian photonic bath
Photon-mediated interaction between quantum emitters in engineered photonic baths is an emerging area of quantum optics. At the same time, non-Hermitian (NH) physics is currently thriving, spurred by the exciting possibility to access new physics in systems ruled by non-trivial NH Hamiltonians-in particular, photonic lattices-which can challenge longstanding tenets such as the Bloch theory of bands. Here, we combine these two fields and study the exotic interaction between emitters mediated by the photonic modes of a lossy photonic lattice described by a NH Hamiltonian. We show in a paradigmatic case study that structured losses in the field can seed exotic emission properties. Photons can mediate dissipative, fully non-reciprocal interactions between emitters with range critically dependent on the loss rate. When this loss rate corresponds to a bare-lattice exceptional point, the effective couplings are exactly nearest neighbor, implementing a dissipative, fully non-reciprocalHatano-Nelson model. Counterintuitively, this can occur irrespective of the lattice boundary conditions. Thus photons can mediate an effective emitter's Hamiltonian which is translationally invariant despite the fact that the field is not. We interpret these effects in terms of metastable atom-photon dressed states, which can be exactly localized on only two lattice cells or extended across the entire lattice. These findings introduce a paradigm of light-mediated interactions with unprecedented features such as non-reciprocity, non-trivial dependence on field boundary conditions, and range tunability via a loss rate. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreemen
Valley-hybridized gate-tunable 1D exciton confinement in MoSe<sub>2</sub>
Controlling excitons at the nanoscale in semiconductor materials represents a formidable challenge in quantum photonics and optoelectronics fields. Monolayers of transition metal dichalcogenides (TMDs) offer inherent two-dimensional confinement and possess significant exciton binding energies, making them promising candidates for achieving electric-field-based confinement of excitons without dissociation. Exploiting the valley degree of freedom associated with these confined states further broadens the prospects for exciton engineering. Here, we show electric control of light polarization emitted from one-dimensional (1D) quantum-confined states in MoSe2. Building on previous reports of tunable trapping potentials and linearly polarized emission, we extend this understanding by demonstrating how nonuniform in-plane electric fields enable in-situ control of these effects and highlight the role of gate-tunable valley hybridization in these localized states. Their polarization is entirely engineered through either the 1D confinement potential’s geometry or an out-of-plane magnetic field. Controlling non-uniform in-plane electric fields in TMDs enables control of the energy (up to five times its linewidth), polarization state (from circular to linear), and position of 1D confined excitonic states (5 nm. V-1 )