4 research outputs found

    Calcium-dependent regulation of genes for plant nodulation in Rhizobium leguminosarum detected by iTRAQ quantitative proteomic analysis

    No full text
    Rhizobia, the nitrogen-fixing bacterial symbionts of legumes, represent an agricultural application of primary relevance and a model of plant-microbe molecular dialogues. We recently described rhizobium proteome alterations induced by plant flavonoids using iTRAQ. Herein, we further extend that experimentation, proving that the transient elevation in cytosolic calcium is a key signaling event necessary for the expression of the nodulation (nod) genes. Ca2+ involvement in nodulation is a novel issue that we recently flagged with genetic and physiological approaches and that hereby we demonstrate also by proteomics. Exploiting the multiple combinations of 4-plex iTRAQ, we analyzed Rhizobium leguminosarum cultures grown with or without the nod gene-inducing plant flavonoid naringenin and in the presence or absence of the extracellular Ca2+ chelator EGTA. We quantified over a thousand proteins, 189 of which significantly altered upon naringenin and/or EGTA stimulation. The expression of NodA, highly induced by naringenin, is strongly reduced when calcium availability is limited by EGTA. This confirms, from a proteomic perspective, that a Ca2+ influx is a necessary early step in flavonoid-mediated legume nodulation by rhizobia. We also observed other proteins affected by the different treatments, whose identities and roles in nodulation and rhizobium physiology are likewise discussed

    Development of an Integrated Linkage Map

    No full text
    corecore