41,692 research outputs found
Influence of the Dirac sea on proton electromagnetic knockout
We use the relativistic distorted-wave impulse approximation (RDWIA) to study
the effects of negative-energy components of Dirac wave functions on the
left-right asymmetry for (e,e'p) reactions on 16-O with 0.2 < Q^2 < 0.8 and
12-C with 0.6 < Q^2 < 1.8 (GeV/c)^2. Spinor distortion is more important for
the bound state than for the ejectile and the net effect decreases with Q^2.
Spinor distortion breaks Godon equivalence and the data favor the CC2 operator
with intermediate coupling to the sea. The left-right asymmetry for Q^2 < 1.2
(GeV/c)^2 is described well by RDWIA calcuations, but at Q^2 = 1.8 (GeV/c)^2
the observed variation with missing momentum is flatter than predicted.Comment: 12 pages, 9 figures, to be submitted to PR
Some Aspects of Measurement Error in Linear Regression of Astronomical Data
I describe a Bayesian method to account for measurement errors in linear
regression of astronomical data. The method allows for heteroscedastic and
possibly correlated measurement errors, and intrinsic scatter in the regression
relationship. The method is based on deriving a likelihood function for the
measured data, and I focus on the case when the intrinsic distribution of the
independent variables can be approximated using a mixture of Gaussians. I
generalize the method to incorporate multiple independent variables,
non-detections, and selection effects (e.g., Malmquist bias). A Gibbs sampler
is described for simulating random draws from the probability distribution of
the parameters, given the observed data. I use simulation to compare the method
with other common estimators. The simulations illustrate that the Gaussian
mixture model outperforms other common estimators and can effectively give
constraints on the regression parameters, even when the measurement errors
dominate the observed scatter, source detection fraction is low, or the
intrinsic distribution of the independent variables is not a mixture of
Gaussians. I conclude by using this method to fit the X-ray spectral slope as a
function of Eddington ratio using a sample of 39 z < 0.8 radio-quiet quasars. I
confirm the correlation seen by other authors between the radio-quiet quasar
X-ray spectral slope and the Eddington ratio, where the X-ray spectral slope
softens as the Eddington ratio increases.Comment: 39 pages, 11 figures, 1 table, accepted by ApJ. IDL routines
(linmix_err.pro) for performing the Markov Chain Monte Carlo are available at
the IDL astronomy user's library, http://idlastro.gsfc.nasa.gov/homepage.htm
Monetary costs of agitation in older adults with Alzheimer's disease in the UK: prospective cohort study
While nearly half of all people with Alzheimer's disease (AD) have agitation symptoms every month, little is known about the costs of agitation in AD. We calculated the monetary costs associated with agitation in older adults with AD in the UK from a National Health Service and personal social services perspective
Cartesian Bicategories II
The notion of cartesian bicategory, introduced by Carboni and Walters for
locally ordered bicategories, is extended to general bicategories. It is shown
that a cartesian bicategory is a symmetric monoidal bicategory
Cycles of construing in radicalization and deradicalization: a study of Salafist Muslims.
© Taylor & Francis Group, LLC.This article explores radicalization and deradicalization by considering the experiences of six young Tunisian people who had become Salafist Muslims. Their responses to narrative interviews and repertory grid technique are considered from a personal construct perspective, revealing processes of construing and reconstruing, as well as relevant aspects of the structure and content of their construct systems. In two cases, their journeys involved not only radicalization but self-deradicalization, and their experiences are drawn on to consider implications for deradicalization.Peer reviewedFinal Accepted Versio
First-principles study of the interaction and charge transfer between graphene and metals
Measuring the transport of electrons through a graphene sheet necessarily
involves contacting it with metal electrodes. We study the adsorption of
graphene on metal substrates using first-principles calculations at the level
of density functional theory. The bonding of graphene to Al, Ag, Cu, Au and
Pt(111) surfaces is so weak that its unique "ultrarelativistic" electronic
structure is preserved. The interaction does, however, lead to a charge
transfer that shifts the Fermi level by up to 0.5 eV with respect to the
conical points. The crossover from p-type to n-type doping occurs for a metal
with a work function ~5.4 eV, a value much larger than the work function of
free-standing graphene, 4.5 eV. We develop a simple analytical model that
describes the Fermi level shift in graphene in terms of the metal substrate
work function. Graphene interacts with and binds more strongly to Co, Ni, Pd
and Ti. This chemisorption involves hybridization between graphene -states
and metal d-states that opens a band gap in graphene. The graphene work
function is as a result reduced considerably. In a current-in-plane device
geometry this should lead to n-type doping of graphene.Comment: 12 pages, 9 figure
Deriving Bisimulation Congruences: 2-categories vs precategories
G-relative pushouts (GRPOs) have recently been proposed by the authors as a new foundation for Leifer and Milner’s approach to deriving labelled bisimulation congruences from reduction systems. This paper develops the theory of GRPOs further, arguing that they provide a simple and powerful basis towards a comprehensive solution. As an example, we construct GRPOs in a category of ‘bunches and wirings.’ We then examine the approach based on Milner’s precategories and Leifer’s functorial reactive systems, and show that it can be recast in a much simpler way into the 2-categorical theory of GRPOs
- …