56 research outputs found

    Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC

    Get PDF
    In non-small-cell lung cancer (NSCLC), epidermal growth factor receptor (EGFR) and K-RAS mutations of the primary tumour are associated with responsiveness and resistance to tyrosine kinase inhibitors (TKIs), respectively. However, the EGFR and K-RAS mutation status in metastases is not well studied. We compared the mutation status of these genes between the primary tumours and the corresponding metastases of 25 patients. Epidermal growth factor receptor and K-RAS mutation status was different between primary tumours and corresponding metastases in 7 (28%) and 6 (24%) of the 25 patients, respectively. Among the 25 primary tumours, three ‘hotspot' and two non-classical EGFR mutations were found; none of the corresponding metastases had the same mutation pattern. Among the five (20%) K-RAS mutations detected in the primary tumours, two were maintained in the corresponding metastasis. Epidermal growth factor receptor and K-RAS mutations were detected in the metastatic tumours of three (12%) and five (20%) patients, respectively. The expressions of EGFR and phosphorylated EGFR showed 10 and 50% discordance, in that order. We conclude that there is substantial discordance in EGFR and K-RAS mutational status between the primary tumours and corresponding metastases in patients with NSCLC and this might have therapeutic implications when treatment with TKIs is considered

    Mutations in the KRAS2 oncogene during progressive stages of human colon carcinoma.

    No full text

    Targeted gene walking polymerase chain reaction.

    No full text
    We describe a modification of a polymerase chain reaction method called 'targeted gene walking' that can be used for the amplification of unknown DNA sequences adjacent to a short stretch of known sequence by using the combination of a single, targeted sequence specific PCR primer with a second, nonspecific 'walking' primer. This technique can replace conventional cloning and screening methods with a single step PCR protocol to greatly expedite the isolation of sequences either upstream or downstream from a known sequence. A number of potential applications are discussed, including its utility as an alternative to cloning and screening for new genes or cDNAs, as a method for searching for polymorphic sites, restriction endonuclease or regulatory regions, and its adaptation to rapidly sequence DNA of lengthy unknown regions that are contiguous to known genes

    C-Ha-ras oncogene in oral leukoplakia tissues

    No full text
    corecore