314 research outputs found

    Multipartite Nonlocal Quantum Correlations Resistant to Imperfections

    Full text link
    We use techniques for lower bounds on communication to derive necessary conditions in terms of detector efficiency or amount of super-luminal communication for being able to reproduce with classical local hidden-variable theories the quantum correlations occurring in EPR-type experiments in the presence of noise. We apply our method to an example involving n parties sharing a GHZ-type state on which they carry out measurements and show that for local-hidden variable theories, the amount of super-luminal classical communication c and the detector efficiency eta are constrained by eta 2^(-c/n) = O(n^(-1/6)) even for constant general error probability epsilon = O(1)

    Spin-torque driven magnetic vortex self-oscillations in perpendicular magnetic fields

    Full text link
    We have employed complete micromagnetic simulations to analyze dc current driven self-oscillations of a vortex core in a spin-valve nanopillar in a perpendicular field by including the coupled effect of the spin-torque and the magnetostatic field computed self-consistently for the entire spin-valve. The vortex in the thicker nanomagnet moves along a quasi-elliptical trajectory that expands with applied current, resulting in blue-shifting of the frequency, while the magnetization of the thinner nanomagnet is non-uniform due to the bias current. The simulations explain the experimental magnetoresistance-field hysteresis loop and yield good agreement with the measured frequency vs. current behavior of this spin-torque vortex oscillator.Comment: 10 pages, 3 figures, to be appear on AP

    Tunneling spectroscopy studies of aluminum oxide tunnel barrier layers

    Full text link
    We report scanning tunneling microscopy and ballistic electron emission microscopy studies of the electronic states of the uncovered and chemisorbed-oxygen covered surface of AlOx tunnel barrier layers. These states change when chemisorbed oxygen ions are moved into the oxide by either flood gun electron bombardment or by thermal annealing. The former, if sufficiently energetic, results in locally well defined conduction band onsets at ~1 V, while the latter results in a progressively higher local conduction band onset, exceeding 2.3 V for 500 and 600 C thermal anneals

    Classical and quantum partition bound and detector inefficiency

    Full text link
    We study randomized and quantum efficiency lower bounds in communication complexity. These arise from the study of zero-communication protocols in which players are allowed to abort. Our scenario is inspired by the physics setup of Bell experiments, where two players share a predefined entangled state but are not allowed to communicate. Each is given a measurement as input, which they perform on their share of the system. The outcomes of the measurements should follow a distribution predicted by quantum mechanics; however, in practice, the detectors may fail to produce an output in some of the runs. The efficiency of the experiment is the probability that the experiment succeeds (neither of the detectors fails). When the players share a quantum state, this gives rise to a new bound on quantum communication complexity (eff*) that subsumes the factorization norm. When players share randomness instead of a quantum state, the efficiency bound (eff), coincides with the partition bound of Jain and Klauck. This is one of the strongest lower bounds known for randomized communication complexity, which subsumes all the known combinatorial and algebraic methods including the rectangle (corruption) bound, the factorization norm, and discrepancy. The lower bound is formulated as a convex optimization problem. In practice, the dual form is more feasible to use, and we show that it amounts to constructing an explicit Bell inequality (for eff) or Tsirelson inequality (for eff*). We give an example of a quantum distribution where the violation can be exponentially bigger than the previously studied class of normalized Bell inequalities. For one-way communication, we show that the quantum one-way partition bound is tight for classical communication with shared entanglement up to arbitrarily small error.Comment: 21 pages, extended versio

    Quantum Nonlocal Boxes Exhibit Stronger Distillability

    Full text link
    The hypothetical nonlocal box (\textsf{NLB}) proposed by Popescu and Rohrlich allows two spatially separated parties, Alice and Bob, to exhibit stronger than quantum correlations. If the generated correlations are weak, they can sometimes be distilled into a stronger correlation by repeated applications of the \textsf{NLB}. Motivated by the limited distillability of \textsf{NLB}s, we initiate here a study of the distillation of correlations for nonlocal boxes that output quantum states rather than classical bits (\textsf{qNLB}s). We propose a new protocol for distillation and show that it asymptotically distills a class of correlated quantum nonlocal boxes to the value 1/2(33+1)≈3.0980761/2 (3\sqrt{3}+1) \approx 3.098076, whereas in contrast, the optimal non-adaptive parity protocol for classical nonlocal boxes asymptotically distills only to the value 3.0. We show that our protocol is an optimal non-adaptive protocol for 1, 2 and 3 \textsf{qNLB} copies by constructing a matching dual solution for the associated primal semidefinite program (SDP). We conclude that \textsf{qNLB}s are a stronger resource for nonlocality than \textsf{NLB}s. The main premise that develops from this conclusion is that the \textsf{NLB} model is not the strongest resource to investigate the fundamental principles that limit quantum nonlocality. As such, our work provides strong motivation to reconsider the status quo of the principles that are known to limit nonlocal correlations under the framework of \textsf{qNLB}s rather than \textsf{NLB}s.Comment: 25 pages, 7 figure

    Universal quantum computation by discontinuous quantum walk

    Full text link
    Quantum walks are the quantum-mechanical analog of random walks, in which a quantum `walker' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This `discontinuous' quantum walk employs perfect quantum state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one timestep apart.Comment: 7 pages, revte
    • …
    corecore