1,249 research outputs found
A simple, ultrahigh vacuum compatible scanning tunneling microscope for use at variable temperatures
We present the construction of a very compact scanning tunneling microscope (STM) which can be operated at temperatures between 4 and 350 K. The tip and a tiny tip holder are the only movable parts, whereas the sample and the piezoscanner are rigidly attached to the body of the STM. This leads to an excellent mechanical stability. The coarse approach system relies on the slip-stick principle and is operated by the same piezotube which is used for scanning. As an example of the performance of the device, images of a NbSe2 surface with atomic resolution are obtained
Recurrence Tracking Microscope
In order to probe nanostructures on a surface we present a microscope based
on the quantum recurrence phenomena. A cloud of atoms bounces off an atomic
mirror connected to a cantilever and exhibits quantum recurrences. The times at
which the recurrences occur depend on the initial height of the bouncing atoms
above the atomic mirror, and vary following the structures on the surface under
investigation. The microscope has inherent advantages over existing techniques
of scanning tunneling microscope and atomic force microscope. Presently
available experimental technology makes it possible to develop the device in
the laboratory
Atomic Force Microscope
The scanning tunneling microscope is proposed as a method to measure forces as small as 10−18 N. As one application for this concept, we introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale. The atomic force microscope is a combination of the principles of the scanning tunneling microscope and the stylus profilometer. It incorporates a probe that does not damage the surface. Our preliminary results in air demonstrate a lateral resolution of 30 ÅA and a vertical resolution less than 1 Å
X-Ray Computed Tomography: Semiautomated Volumetric Analysis of Late-Stage Lung Tumors as a Basis for Response Assessments
Background. This study presents a semiautomated approach for volumetric analysis of lung tumors and evaluates the feasibility of using volumes as an alternative to line lengths as a basis for response evaluation criteria in solid tumors (RECIST). The overall goal for the implementation was to accurately, precisely, and efficiently enable the analyses of lesions in the lung under the guidance of an operator. Methods. An anthropomorphic phantom with embedded model masses and 71 time points in 10 clinical cases with advanced lung cancer was analyzed using a semi-automated workflow. The implementation was done using the Cognition Network Technology. Results. Analysis of the phantom showed an average accuracy of 97%. The analyses of the clinical cases showed both intra- and interreader variabilities of approximately 5% on average with an upper 95% confidence interval of 14% and 19%, respectively. Compared to line lengths, the use of volumes clearly shows enhanced sensitivity with respect to determining response to therapy. Conclusions. It is feasible to perform volumetric analysis efficiently with high accuracy and low variability, even in patients with late-stage cancer who have complex lesions
Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors
We report the fabrication and the characterization of carbon fibre tips for
their use in combined scanning tunnelling and force microscopy based on
piezoelectric quartz tuning fork force sensors. We find that the use of carbon
fibre tips results in a minimum impact on the dynamics of quartz tuning fork
force sensors yielding a high quality factor and consequently a high force
gradient sensitivity. This high force sensitivity in combination with high
electrical conductivity and oxidation resistance of carbon fibre tips make them
very convenient for combined and simultaneous scanning tunnelling microscopy
and atomic force microscopy measurements. Interestingly, these tips are quite
robust against occasionally occurring tip crashes. An electrochemical
fabrication procedure to etch the tips is presented that produces a sub-100 nm
apex radius in a reproducible way which can yield high resolution images.Comment: 14 pages, 10 figure
Quantum shot-noise at local tunneling contacts on mesoscopic multiprobe conductors
New experiments that measure the low-frequency shot-noise spectrum at local
tunneling contacts on mesoscopic structures are proposed. The current
fluctuation spectrum at a single tunneling tip is determined by local partial
densities of states. The current-correlation spectrum between two tunneling
tips is sensitive to non-diagonal density of states elements which are
expressed in terms of products of scattering states of the conductor. Thus such
an experiment permits to investigate correlations of electronic wave functions.
We present specific results for a clean wire with a single barrier and for
metallic diffusive conductors.Comment: 4 pages REVTeX, 2 figure
Dynamic image potential at an Al(111) surface
We evaluate the electronic self-energy Sigma(E) at an Al(111) surface using the GW space-time method. This self-energy automatically includes the image potential V-im not present in any local-density approximation for exchange and correlation. We solve the energy-dependent quasiparticle equations and calculate the effective local potential experienced by electrons in the near-surface region. The relative contribution of exchange proves to be very different for states above the Fermi level. The image-plane position for interacting electrons is closer to the surface than for the purely electrostatic effects felt by test charges, and, like its classical counterpart, is drawn inwards by the effects of atomic structure
Theoretical Study of Friction: A Case of One-Dimensional Clean Surfaces
A new method has been proposed to evaluate the frictional force in the
stationary state. This method is applied to the 1-dimensional model of clean
surfaces. The kinetic frictional force is seen to depend on velocity in
general, but the dependence becomes weaker as the maximum static frictional
force increases and in the limiting case the kinetic friction gets only weakly
dependent on velocity as described by one of the laws of friction. It is also
shown that there is a phase transition between state with vanishing maximum
static frictional force and that with finite one. The role of randomness at the
interface and the relation to the impurity pinning of the sliding
Charge-Density-Wave are discussed. to appear in Phys.Rev.B. abstract only. Full
text is available upon request. E-mail: [email protected]: 2 pages, Plain TEX, OUCMT-94-
Theory of oscillations in the STM conductance resulting from subsurface defects (Review Article)
In this review we present recent theoretical results concerning
investigations of single subsurface defects by means of a scanning tunneling
microscope (STM). These investigations are based on the effect of quantum
interference between the electron partial waves that are directly transmitted
through the contact and the partial waves scattered by the defect. In
particular, we have shown the possibility imaging the defect position below a
metal surface by means of STM. Different types of subsurface defects have been
discussed: point-like magnetic and non-magnetic defects, magnetic clusters in a
nonmagnetic host metal, and non-magnetic defects in a s-wave superconductor.
The effect of Fermi surface anisotropy has been analyzed. Also, results of
investigations of the effect of a strong magnetic field to the STM conductance
of a tunnel point contact in the presence of a single defect has been
presented.Comment: 31 pages, 10 figuers Submitted to Low. Temp. Phy
- …