339 research outputs found

    Comments on the Non-Commutative Description of Classical Gravity

    Get PDF
    We find a one-parameter family of Lagrangian descriptions for classical general relativity in terms of tetrads which are not c-numbers. Rather, they obey exotic commutation relations. These noncommutative properties drop out in the metric sector of the theory, where the Christoffel symbols and the Riemann tensor are ordinary commuting objects and they are given by the usual expression in terms of the metric tensor. Although the metric tensor is not a c-number, we argue that all measurements one can make in this theory are associated with c-numbers, and thus that the common invariant sector of our one--parameter family of deformed gauge theories (for the case of zero torsion) is physically equivalent to Einstein's general relativity.Comment: Latex file, 13 pages, no figure

    Z Flux-Line Lattices and Self-Dual Equations in the Standard Model

    Get PDF
    We derive gauge covariant self-dual equations for the SU(2)Ă—U(1)YSU(2) \times U(1)_Y theory of electro-weak interactions and show that they admit solutions describing a periodic lattice of Z-strings.} \newpageComment: 10 pages, IC/94/65, INFN-NA-IV-5/9

    A Monte Carlo study of Inverse Symmetry Breaking

    Get PDF
    We make a Monte Carlo study of the coupled two-scalar λϕ12ϕ22\lambda\phi^2_1\phi^2_2 model in four dimensions at finite temperature. We find no trace of Inverse Symmetry Breaking for values of the renormalized parameters for which perturbation theory predicts this phenomenon.Comment: 4 pages, revtex, 3 figures include

    Conformal Field Theory of Critical Casimir Interactions in 2D

    Get PDF
    Thermal fluctuations of a critical system induce long-ranged Casimir forces between objects that couple to the underlying field. For two dimensional (2D) conformal field theories (CFT) we derive an exact result for the Casimir interaction between two objects of arbitrary shape, in terms of (1) the free energy of a circular ring whose radii are determined by the mutual capacitance of two conductors with the objects' shape; and (2) a purely geometric energy that is proportional to conformal charge of the CFT, but otherwise super-universal in that it depends only on the shapes and is independent of boundary conditions and other details.Comment: 5 pages, 3 figure

    Bicovariant Calculus in Quantum Theory and a Generalization of the Gauss Law

    Get PDF
    We construct a deformation of the quantum algebra Fun(T^*G) associated with Lie group G to the case where G is replaced by a quantum group G_q which has a bicovariant calculus. The deformation easily allows for the inclusion of the current algebra of left and right invariant one forms. We use it to examine a possible generalization of the Gauss law commutation relations for gauge theories based on G_q.Comment: 12 page

    Thermal effect in the Casimir force for graphene and graphene-coated substrates: Impact of nonzero mass gap and chemical potential

    Get PDF
    The rigorous finite-temperature QED formalism of the polarization tensor is used to study the combined effect of nonzero mass gap mm and chemical potential ÎĽ\mu on the Casimir force and its thermal correction in the experimentally relevant configuration of a Au sphere interacting with a real graphene sheet or with graphene-coated dielectric substrates made of different materials. It is shown that for both a free-standing graphene sheet and for graphene-coated substrates the magnitude of the Casimir force decreases as mm is increased, while it increases as ÎĽ\mu is increased, indicating that these parameters act in opposite directions. According to our results, the impact of mm and/or ÎĽ\mu on the Casimir force for graphene-coated plates is much smaller than for a free-standing graphene sheet. Furthermore, computations show that the Casimir force is much stronger for graphene-coated substrates than for a free-standing graphene sample, but the thermal correction and its fractional weight in the total force are smaller in the former case. These results are applied to a differential setup that was recently proposed to observe the giant thermal effect in the Casimir force for graphene. We show that this experiment remains feasible even after taking into account the influence of the nonzero mass-gap and chemical potential of real graphene samples. Possible further applications of the obtained results are discussed.Comment: 27 pages, 8 figures; accepted for publication in Phys. Rev.

    How to observe the giant thermal effect in the Casimir force for graphene systems

    Get PDF
    A differential measurement scheme is proposed which allows for a clear observation of the giant thermal effect for the Casimir force, that was recently predicted to occur in graphene systems at short separation distances. The difference among the Casimir forces acting between a metal-coated sphere and the two halves of a dielectric plate, one uncoated and the other coated with graphene, is calculated in the framework of the Dirac model using the rigorous formalism of the polarization tensor. It is shown that in the proposed configuration both the difference among the Casimir forces and its thermal contributioncan be easily measured using already existing experimental setups. An observation of the giant thermal effect should open opportunities for modulation and control of dispersion forces in micromechanical systems based on graphene and other novel 2D-materials.Comment: 13 pages, 3 figures; accepted for publication in Phys. Rev.

    Universal experimental test for the role of free charge carriers in thermal Casimir effect within a micrometer separation range

    Get PDF
    We propose a universal experiment to measure the differential Casimir force between a Au-coated sphere and two halves of a structured plate covered with a P-doped Si overlayer. The concentration of free charge carriers in the overlayer is chosen slightly below the critical one, f or which the phase transition from dielectric to metal occurs. One ha f of the structured plate is insulating, while its second half is made of gold. For the former we consider two different structures, one consisting of bulk high-resistivity Si and the other of a layer of silica followed by bulk high-resistivity Si. The differential Casimir force is computed within the Lifshitz theory using four approaches that have been proposed in the literature to account for the role of free charge carriers in metallic and dielectric materials interacting with quantum fluctuations. According to these approaches, Au at low frequencies is described by either the Drude or the plasma model, whereas the free charge carriers in dielectric materials at room temperature are either taken into account or disregarded. It is shown that the values of differential Casimir forces, computed in the micrometer separation range using these four approaches, are widely distinct from each other and can be easily discriminated experimentally. It is shown that for all approaches the thermal component of the differential Casimir force is sufficiently large for direct observation. The possible errors and uncertainties in the proposed experiment are estimated and its importance for the theory of quantum fluctuations is discussed.Comment: 26 pages, 1 table, 8 figures; Phys. Rev. A, accepted for publication. Figure 5 is correcte

    Discretized Laplacians on an Interval and their Renormalization Group

    Full text link
    The Laplace operator admits infinite self-adjoint extensions when considered on a segment of the real line. They have different domains of essential self-adjointness characterized by a suitable set of boundary conditions on the wave functions. In this paper we show how to recover these extensions by studying the continuum limit of certain discretized versions of the Laplace operator on a lattice. Associated to this limiting procedure, there is a renormalization flow in the finite dimensional parameter space describing the dicretized operators. This flow is shown to have infinite fixed points, corresponding to the self-adjoint extensions characterized by scale invariant boundary conditions. The other extensions are recovered by looking at the other trajectories of the flow.Comment: 23 pages, 2 figures, DSF-T-28/93,INFN-NA-IV-28/93, SU-4240-54
    • …
    corecore