7 research outputs found
Fair Loss-Tolerant Quantum Coin Flipping
Coin flipping is a cryptographic primitive in which two spatially separated
players, who in principle do not trust each other, wish to establish a common
random bit. If we limit ourselves to classical communication, this task
requires either assumptions on the computational power of the players or it
requires them to send messages to each other with sufficient simultaneity to
force their complete independence. Without such assumptions, all classical
protocols are so that one dishonest player has complete control over the
outcome. If we use quantum communication, on the other hand, protocols have
been introduced that limit the maximal bias that dishonest players can produce.
However, those protocols would be very difficult to implement in practice
because they are susceptible to realistic losses on the quantum channel between
the players or in their quantum memory and measurement apparatus. In this
paper, we introduce a novel quantum protocol and we prove that it is completely
impervious to loss. The protocol is fair in the sense that either player has
the same probability of success in cheating attempts at biasing the outcome of
the coin flip. We also give explicit and optimal cheating strategies for both
players.Comment: 12 pages, 1 figure; various minor typos corrected in version
Flipping quantum coins
Coin flipping is a cryptographic primitive in which two distrustful parties
wish to generate a random bit in order to choose between two alternatives. This
task is impossible to realize when it relies solely on the asynchronous
exchange of classical bits: one dishonest player has complete control over the
final outcome. It is only when coin flipping is supplemented with quantum
communication that this problem can be alleviated, although partial bias
remains. Unfortunately, practical systems are subject to loss of quantum data,
which restores complete or nearly complete bias in previous protocols. We
report herein on the first implementation of a quantum coin-flipping protocol
that is impervious to loss. Moreover, in the presence of unavoidable
experimental noise, we propose to use this protocol sequentially to implement
many coin flips, which guarantees that a cheater unwillingly reveals
asymptotically, through an increased error rate, how many outcomes have been
fixed. Hence, we demonstrate for the first time the possibility of flipping
coins in a realistic setting. Flipping quantum coins thereby joins quantum key
distribution as one of the few currently practical applications of quantum
communication. We anticipate our findings to be useful for various
cryptographic protocols and other applications, such as an online casino, in
which a possibly unlimited number of coin flips has to be performed and where
each player is free to decide at any time whether to continue playing or not.Comment: 17 pages, 3 figure
Best of both worlds
International audienceSecure communication is emerging as a significant challenge for our hyper-connected data-dependent society. The answer may lie in a clever combination of quantum and classical cryptographic techniques
Quantum dice rolling: a multi-outcome generalization of quantum coin flipping
The problem of quantum dice rolling (DR)-a generalization of the problem of quantum coin flipping (CF) to more than two outcomes and parties-is studied in both its weak and strong variants. We prove by construction that quantum mechanics allows for (i) weak N-sided DR admitting arbitrarily small bias for any N and (ii) two-party strong N-sided DR saturating Kitaev's bound for any N. To derive (ii) we also prove by construction that quantum mechanics allows for (iii) strong imbalanced CF saturating Kitaev's bound for any degree of imbalance. Furthermore, as a corollary of (ii) we introduce a family of optimal 2m-party strong nm-sided DR protocols for any pair m and n. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.SCOPUS: ar.jinfo:eu-repo/semantics/publishe