84 research outputs found

    Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides with experiment and theory

    Get PDF
    Chalcogen vacancies are considered to be the most abundant point defects in two-dimensional (2D) transition-metal dichalcogenide (TMD) semiconductors, and predicted to result in deep in-gap states (IGS). As a result, important features in the optical response of 2D-TMDs have typically been attributed to chalcogen vacancies, with indirect support from Transmission Electron Microscopy (TEM) and Scanning Tunneling Microscopy (STM) images. However, TEM imaging measurements do not provide direct access to the electronic structure of individual defects; and while Scanning Tunneling Spectroscopy (STS) is a direct probe of local electronic structure, the interpretation of the chemical nature of atomically-resolved STM images of point defects in 2D-TMDs can be ambiguous. As a result, the assignment of point defects as vacancies or substitutional atoms of different kinds in 2D-TMDs, and their influence on their electronic properties, has been inconsistent and lacks consensus. Here, we combine low-temperature non-contact atomic force microscopy (nc-AFM), STS, and state-of-the-art ab initio density functional theory (DFT) and GW calculations to determine both the structure and electronic properties of the most abundant individual chalcogen-site defects common to 2D-TMDs. Surprisingly, we observe no IGS for any of the chalcogen defects probed. Our results and analysis strongly suggest that the common chalcogen defects in our 2D-TMDs, prepared and measured in standard environments, are substitutional oxygen rather than vacancies

    Fabrication of Nanostructured GaAs/AlGaAs Waveguide for Low-Density Polariton Condensation from a Bound State in the Continuum

    Get PDF
    Exciton-polaritons are hybrid light-matter states that arise from strong coupling between an exciton resonance and a photonic cavity mode. As bosonic excitations, they can undergo a phase transition to a condensed state that can emit coherent light without a population inversion. This aspect makes them good candidates for thresholdless lasers, yet short exciton-polariton lifetime has made it difficult to achieve condensation at very low power densities. In this sense, long-lived symmetry-protected states are excellent candidates to overcome the limitations that arise from the finite mirror reflectivity of monolithic microcavities. In this work we use a photonic symmetry protected bound state in the continuum coupled to an excitonic resonance to achieve state-of-the-art polariton condensation threshold in GaAs/AlGaAs waveguide. Most important, we show the influence of fabrication control and how surface passivation via atomic layer deposition provides a way to reduce exciton quenching at the grating sidewalls

    Nanoantennas for visible and infrared radiation

    Full text link
    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.Comment: Review article with 76 pages, 21 figure

    Direct visualization of the charge transfer in Graphene/α\alpha-RuCl3_3 heterostructure

    Get PDF
    We investigate the electronic properties of a graphene and α\alpha-ruthenium trichloride (hereafter RuCl3_3) heterostructure, using a combination of experimental and theoretical techniques. RuCl3_3 is a Mott insulator and a Kitaev material, and its combination with graphene has gained increasing attention due to its potential applicability in novel electronic and optoelectronic devices. By using a combination of spatially resolved photoemission spectroscopy, low energy electron microscopy, and density functional theory (DFT) calculations we are able to provide a first direct visualization of the massive charge transfer from graphene to RuCl3_3, which can modify the electronic properties of both materials, leading to novel electronic phenomena at their interface. The electronic band structure is compared to DFT calculations that confirm the occurrence of a Mott transition for RuCl3_3. Finally, a measurement of spatially resolved work function allows for a direct estimate of the interface dipole between graphene and RuCl3_3. The strong coupling between graphene and RuCl3_3 could lead to new ways of manipulating electronic properties of two-dimensional lateral heterojunction. Understanding the electronic properties of this structure is pivotal for designing next generation low-power opto-electronics devices

    Mode imaging and selection in strongly coupled nanoantennas

    Full text link
    The number of eigenmodes in plasmonic nanostructures increases with complexity due to mode hybridization, raising the need for efficient mode characterization and selection. Here we experimentally demonstrate direct imaging and selective excitation of the bonding and antibonding plasmon mode in symmetric dipole nanoantennas using confocal two-photon photoluminescence mapping. Excitation of a high-quality-factor antibonding resonance manifests itself as a two-lobed pattern instead of the single spot observed for the broad bonding resonance, in accordance with numerical simulations. The two-lobed pattern is observed due to the fact that excitation of the antibonding mode is forbidden for symmetric excitation at the feedgap, while concomitantly the mode energy splitting is large enough to suppress excitation of the bonding mode. The controlled excitation of modes in strongly coupled plasmonic nanostructures is mandatory for efficient sensors, in coherent control as well as for implementing well-defined functionalities in complex plasmonic devices.Comment: 11 pages, 5 figures, 1 supplementary informatio
    corecore