3,267 research outputs found

    Diffusion-Limited One-Species Reactions in the Bethe Lattice

    Full text link
    We study the kinetics of diffusion-limited coalescence, A+A-->A, and annihilation, A+A-->0, in the Bethe lattice of coordination number z. Correlations build up over time so that the probability to find a particle next to another varies from \rho^2 (\rho is the particle density), initially, when the particles are uncorrelated, to [(z-2)/z]\rho^2, in the long-time asymptotic limit. As a result, the particle density decays inversely proportional to time, \rho ~ 1/kt, but at a rate k that slowly decreases to an asymptotic constant value.Comment: To be published in JPCM, special issue on Kinetics of Chemical Reaction

    Cluster approximation solution of a two species annihilation model

    Full text link
    A two species reaction-diffusion model, in which particles diffuse on a one-dimensional lattice and annihilate when meeting each other, has been investigated. Mean field equations for general choice of reaction rates have been solved exactly. Cluster mean field approximation of the model is also studied. It is shown that, the general form of large time behavior of one- and two-point functions of the number operators, are determined by the diffusion rates of the two type of species, and is independent of annihilation rates.Comment: 9 pages, 7 figure

    Memory-Controlled Diffusion

    Full text link
    Memory effects require for their incorporation into random-walk models an extension of the conventional equations. The linear Fokker-Planck equation for the probability density p(r⃗,t)p(\vec r, t) is generalized to include non-linear and non-local spatial-temporal memory effects. The realization of the memory kernels are restricted due the conservation of the basic quantity pp. A general criteria is given for the existence of stationary solutions. In case the memory kernel depends on pp polynomially the transport is prevented. Owing to the delay effects a finite amount of particles remains localized and the further transport is terminated. For diffusion with non-linear memory effects we find an exact solution in the long-time limit. Although the mean square displacement shows diffusive behavior, higher order cumulants exhibits differences to diffusion and they depend on the memory strength

    The Levantine Basin - crustal structure and origin

    Get PDF
    The origin of the Levantine Basin in the Southeastern Mediterranean Sea is related to the opening of the Neo-Tethys. The nature of its crust has been debated for decades. Therefore, we conducted a geophysical experiment in the Levantine Basin. We recorded two refraction seismic lines with 19 and 20 ocean bottom hydrophones, respectively, and developed velocity models. Additional seismic reflection data yield structural information about the upper layers in the first few kilometers. The crystalline basement in the Levantine Basin consists of two layers with a P-wave velocity of 6.06.4 km/s in the upper and 6.56.9 km/s in the lower crust. Towards the center of the basin, the Moho depth decreases from 27 to 22 km. Local variations of the velocity gradient can be attributed to previously postulated shear zones like the Pelusium Line, the DamiettaLatakia Line and the BaltimHecateus Line. Both layers of the crystalline crust are continuous and no indication for a transition from continental to oceanic crust is observed. These results are confirmed by gravity data. Comparison with other seismic refraction studies in prolongation of our profiles under Israel and Jordan and in the Mediterranean Sea near Greece and Sardinia reveal similarities between the crust in the Levantine Basin and thinned continental crust, which is found in that region. The presence of thinned continental crust under the Levantine Basin is therefore suggested. A β-factor of 2.33 is estimated. Based on these findings, we conclude that sea-floor spreading in the Eastern Mediterranean Sea only occurred north of the Eratosthenes Seamount, and the oceanic crust was later subducted at the Cyprus Arc

    Exactly solvable models through the empty interval method, for more-than-two-site interactions

    Full text link
    Single-species reaction-diffusion systems on a one-dimensional lattice are considered, in them more than two neighboring sites interact. Constraints on the interaction rates are obtained, that guarantee the closedness of the time evolution equation for En(t)E_n(t)'s, the probability that nn consecutive sites are empty at time tt. The general method of solving the time evolution equation is discussed. As an example, a system with next-nearest-neighbor interaction is studied.Comment: 19 pages, LaTeX2

    A Random Walk to a Non-Ergodic Equilibrium Concept

    Full text link
    Random walk models, such as the trap model, continuous time random walks, and comb models exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is: what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this manuscript a non-ergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the non-ergodic phase the distribution of the occupation time of the particle on a given lattice point, approaches U or W shaped distributions related to the arcsin law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the non-ergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a delta function centered on the value predicted based on standard Boltzmann-Gibbs statistics. Relation of our work with single molecule experiments is briefly discussed.Comment: 14 pages, 6 figure

    Quantum quenches and driven dynamics in a single-molecule device

    Full text link
    The nonequilibrium dynamics of molecular devices is studied in the framework of a generic model for single-molecule transistors: a resonant level coupled by displacement to a single vibrational mode. In the limit of a broad level and in the vicinity of the resonance, the model can be controllably reduced to a form quadratic in bosonic operators, which in turn is exactly solvable. The response of the system to a broad class of sudden quenches and ac drives is thus computed in a nonperturbative manner, providing an asymptotically exact solution in the limit of weak electron-phonon coupling. From the analytic solution we are able to (1) explicitly show that the system thermalizes following a local quantum quench, (2) analyze in detail the time scales involved, (3) show that the relaxation time in response to a quantum quench depends on the observable in question, and (4) reveal how the amplitude of long-time oscillations evolves as the frequency of an ac drive is tuned across the resonance frequency. Explicit analytical expressions are given for all physical quantities and all nonequilibrium scenarios under study.Comment: 23 pages, 13 figure

    Diffusion-Limited Coalescence with Finite Reaction Rates in One Dimension

    Full text link
    We study the diffusion-limited process A+A→AA+A\to A in one dimension, with finite reaction rates. We develop an approximation scheme based on the method of Inter-Particle Distribution Functions (IPDF), which was formerly used for the exact solution of the same process with infinite reaction rate. The approximation becomes exact in the very early time regime (or the reaction-controlled limit) and in the long time (diffusion-controlled) asymptotic limit. For the intermediate time regime, we obtain a simple interpolative behavior between these two limits. We also study the coalescence process (with finite reaction rates) with the back reaction A→A+AA\to A+A, and in the presence of particle input. In each of these cases the system reaches a non-trivial steady state with a finite concentration of particles. Theoretical predictions for the concentration time dependence and for the IPDF are compared to computer simulations. P. A. C. S. Numbers: 82.20.Mj 02.50.+s 05.40.+j 05.70.LnComment: 13 pages (and 4 figures), plain TeX, SISSA-94-0

    Target annihilation by diffusing particles in inhomogeneous geometries

    Full text link
    The survival probability of immobile targets, annihilated by a population of random walkers on inhomogeneous discrete structures, such as disordered solids, glasses, fractals, polymer networks and gels, is analytically investigated. It is shown that, while it cannot in general be related to the number of distinct visited points, as in the case of homogeneous lattices, in the case of bounded coordination numbers its asymptotic behaviour at large times can still be expressed in terms of the spectral dimension d~\widetilde {d}, and its exact analytical expression is given. The results show that the asymptotic survival probability is site independent on recurrent structures (d~≤2\widetilde{d}\leq2), while on transient structures (d~>2\widetilde{d}>2) it can strongly depend on the target position, and such a dependence is explicitly calculated.Comment: To appear in Physical Review E - Rapid Communication

    Complete Exact Solution of Diffusion-Limited Coalescence, A + A -> A

    Full text link
    Some models of diffusion-limited reaction processes in one dimension lend themselves to exact analysis. The known approaches yield exact expressions for a limited number of quantities of interest, such as the particle concentration, or the distribution of distances between nearest particles. However, a full characterization of a particle system is only provided by the infinite hierarchy of multiple-point density correlation functions. We derive an exact description of the full hierarchy of correlation functions for the diffusion-limited irreversible coalescence process A + A -> A.Comment: 4 pages, 2 figures (postscript). Typeset with Revte
    • …
    corecore