836 research outputs found
Recommended from our members
Analytic Conditions for Energy Neutrality in Uniformly-Formed Wireless Sensor Networks
Future deployments of wireless sensor network (WSN) infrastructures for environmental or event monitoring are expected to be equipped with energy harvesters (e.g. piezoelectric, thermal, photovoltaic) in order to substantially increase their autonomy. In this paper we derive conditions for energy neutrality, i.e. perpetual energy autonomy per sensor node, by balancing the node's expected energy consumption with its expected energy harvesting capability. Our analysis assumes a uniformly-formed WSN, i.e. a network comprising identical transmitter sensor nodes and identical receiver/relay sensor nodes with a balanced cluster-tree topology. The proposed framework is parametric to: (i) the duty cycle for the network activation; (ii) the number of nodes in the same tier of the cluster-tree topology; (iii) the consumption rate of the receiver node(s) that collect (and possibly relay) data along with their own; (iv) the marginal probability density function (PDF) characterizing the data transmission rate per node; (v) the expected amount of energy harvested by each node. Based on our analysis, we obtain the number of nodes leading to the minimumenergy harvestingrequirement for each tier of the WSN cluster-tree topology. We also derive closed-form expressions for the difference in the minimum energy harvesting requirements between four transmission rate PDFs in function of the WSN parameters. Our analytic results are validated via experiments using TelosB sensor nodes and an energy measurement testbed. Our framework is useful for feasibility studies on energy harvesting technologies in WSNs and for optimizing the operational settings of hierarchical WSN-based monitoring infrastructures prior to time-consuming testing and deployment within the application environment
Energy Harvesting for the Internet-of-Things: Measurements and Probability Models
The success of future Internet-of-Things (IoT) based application deployments depends on the ability of wireless sensor platforms to sustain uninterrupted operation based on environmental energy harvesting. In this paper, we deploy a multitransducer platform for photovoltaic and piezoelectric energy harvesting and collect raw data about the harvested power in commonly-encountered outdoor and indoor scenarios. We couple the generated power profiles with probability mixture models and make our data and processing code freely available to the research community for wireless sensors and IoT-oriented applications. Our aim is to provide data-driven probability models that characterize the energy production process, which will substantially facilitate the coupling of energy harvesting statistics with energy consumption models for processing and transceiver designs within upcoming IoT deployments
Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence
A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid
jClust: a clustering and visualization toolbox
jClust is a user-friendly application which provides access to a set of widely used clustering and clique finding algorithms. The toolbox allows a range of filtering procedures to be applied and is combined with an advanced implementation of the Medusa interactive visualization module. These implemented algorithms are k-Means, Affinity propagation, Bron–Kerbosch, MULIC, Restricted neighborhood search cluster algorithm, Markov clustering and Spectral clustering, while the supported filtering procedures are haircut, outside–inside, best neighbors and density control operations. The combination of a simple input file format, a set of clustering and filtering algorithms linked together with the visualization tool provides a powerful tool for data analysis and information extraction
Electron-hadron shower discrimination in a liquid argon time projection chamber
By exploiting structural differences between electromagnetic and hadronic showers in a multivariate analysis we present an efficient Electron-Hadron discrimination algorithm for liquid argon time projection chambers, validated using Geant4 simulated data
Large Scale Structures a Gradient Lines: the case of the Trkal Flow
A specific asymptotic expansion at large Reynolds numbers (R)for the long
wavelength perturbation of a non stationary anisotropic helical solution of the
force less Navier-Stokes equations (Trkal solutions) is effectively constructed
of the Beltrami type terms through multi scaling analysis. The asymptotic
procedure is proved to be valid for one specific value of the scaling
parameter,namely for the square root of the Reynolds number (R).As a result
large scale structures arise as gradient lines of the energy determined by the
initial conditions for two anisotropic Beltrami flows of the same helicity.The
same intitial conditions determine the boundaries of the vortex-velocity tubes,
containing both streamlines and vortex linesComment: 27 pages, 2 figure
A Real-Time Life Experience Logging Tool
Abstract. E-memories attempt to digitally encode all life experiences in an archive for later search and real-time recommendation. In this paper we describe a prototype real-time e-memory gathering infrastructure and system, that uses smartphones to gather and organise semantically rich
e-memory
- …