1,328 research outputs found
The 4 K outer cryostat for the CUORE experiment: construction and quality control
The external shell of the CUORE cryostat is a large cryogen-free system
designed to host the dilution refrigerator and the bolometers of the CUORE
experiment in a low radioactivity environment. The three vessels that form the
outer shell were produced and delivered to the Gran Sasso underground
Laboratories in July 2012. In this paper, we describe the production techniques
and the validation tests done at the production site in 2012.Comment: 11 pages, 13 figures; to appear in NIM
Proteasome stress sensitizes malignant pleural mesothelioma cells to bortezomib-induced apoptosis
Abstract Based on promising results in preclinical models, clinical trials have been performed to evaluate the efficacy of the first-in-class proteasome inhibitor bortezomib towards malignant pleural mesothelioma (MPM), an aggressive cancer arising from the mesothelium of the serous cavities following exposure to asbestos. Unexpectedly, only minimal therapeutic benefits were observed, thus implicating that MPM harbors inherent resistance mechanisms. Identifying the molecular bases of this primary resistance is crucial to develop novel pharmacologic strategies aimed at increasing the vulnerability of MPM to bortezomib. Therefore, we assessed a panel of four human MPM lines with different sensitivity to bortezomib, for functional proteasome activity and levels of free and polymerized ubiquitin. We found that highly sensitive MPM lines display lower proteasome activity than more bortezomib-resistant clones, suggesting that reduced proteasomal capacity might contribute to the intrinsic susceptibility of mesothelioma cells to proteasome inhibitors-induced apoptosis. Moreover, MPM equipped with fewer active proteasomes accumulated polyubiquitinated proteins, at the expense of free ubiquitin, a condition known as proteasome stress, which lowers the cellular apoptotic threshold and sensitizes mesothelioma cells to bortezomib-induced toxicity as shown herein. Taken together, our data suggest that an unfavorable load-versus-capacity balance represents a critical determinant of primary apoptotic sensitivity to bortezomib in MPM
Performance of a large TeO2 crystal as a cryogenic bolometer in searching for neutrinoless double beta decay
Bolometers are ideal devices in the search for neutrinoless Double Beta
Decay. Enlarging the mass of individual detectors would simplify the
construction of a large experiment, but would also decrease the background per
unit mass induced by alpha-emitters located close to the surfaces and
background arising from external and internal gamma's. We present the very
promising results obtained with a 2.13 kg TeO2 crystal. This bolometer, cooled
down to a temperature of 10.5 mK in a dilution refrigerator located deep
underground in the Gran Sasso National Laboratories, represents the largest
thermal detector ever operated. The detector exhibited an energy resolution
spanning a range from 3.9 keV (at 145 keV) to 7.8 keV (at the 2615 gamma-line
of 208Tl) FWHM. We discuss the decrease in the background per unit mass that
can be achieved increasing the mass of a bolometer.Comment: 6 pages, 6 figure
First operations of the LNS heavy ions facility
Abstract A heavy ion facility is now available at Laboratorio Nazionale del Sud (LNS) of Catania. It can deliver beams with an energy up to 100 MeV/amu. The facility is based on a 15MV HVEC tandem and a K = 800 superconducting cyclotron as booster. During the last year, the facility came into operation. A 58Ni beam delivered by the tandem has been radially injected in the SC and then has been accelerated and extracted at 30 MeV/amu. In this paper the status of the facility together with the experience gained during the commissioning will be extensively reported
Mechanical behavior of the ATLAS B0 model coil
The ATLAS B0 model coil has been developed and constructed to verify the design parameters and the manufacture techniques of the Barrel Toroid coils (BT) that are under construction for the ATLAS Detector. Essential for successful operation is the mechanical behavior of the superconducting coil and its support structure. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce in the model coil the electromagnetic forces of the BT coils when assembled in the final Barrel Toroid magnet system. The model coil is extensively equipped with mechanical instrumentation to monitor stresses and force levels as well as contraction during a cooling down and excitation up to nominal current. The installed set up of strain gauges, position sensors and capacitive force transducers is presented. Moreover the first mechanical results in terms of expected main stress, strain and deformation values are presented based on detailed mechanical analysis of the design. (7 refs)
- …