2,303 research outputs found

    Hidden Conformal Symmetry in Randall-Sundrum 2 Model: Universal Fermion Localization by Torsion

    Full text link
    In this manuscript we describe a hidden conformal symmetry of the second Randall-Sundrum model (RS2). We show how this can be used to localize fermions of both chiralities. The conformal symmetry leaves few free dimensionless constants and constrains the allowed interactions. In this formulation the warping of the extra dimension emerges from a partial breaking of the conformal symmetry in five dimensions. The solution of the system can be described in two alternative gauges: by the metric or by the conformon. By considering this as a fundamental symmetry we construct a conformally invariant action for a vector field which provides a massless photon localized over a Minkowski brane. This is obtained by a conformal non-minimal coupling that breaks the gauge symmetry in five dimensions. We further consider a generalization of the model by including conformally invariant torsion. By coupling torsion non-minimally to fermions we obtain a localized zero mode of both chiralities completing the consistence of the model. The inclusion of torsion introduces a fermion quartic interaction that can be used to probe the existence of large extra dimensions and the validity of the model. This seems to point to the fact that conformal symmetry may be more fundamental than gauge symmetry and that this is the missing ingredient for the full consistence of RS scenarios.Comment: Published versio

    Spinors Fields in Co-dimension One Braneworlds

    Full text link
    In this work we analyze the zero mode localization and resonances of 1/2−1/2-spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension DD we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η1\eta_1, (ii) a Yukawa-dilaton coupling with two parameters η2\eta_2 and λ\lambda and (iii) a dilaton derivative coupling with parameter hh. Together with the deformation parameter ss, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of DD, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of DD induces a shift in the peaks of resonances. For a given λ\lambda with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D=5D=5 do not induces resonances but when we consider D=10D=10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields.Comment: 28 pages, 7 figure

    Universal Aspects of U(1)U(1) Gauge Field Localization on Branes in DD-dimensions

    Full text link
    In this work, we study the general properties of the DD-vector field localization on (D−d−1)(D-d-1)-brane with co-dimension dd. We consider a conformally flat metric with the warp factor depending only on the transverse extra dimensions. We employ the geometrical coupling mechanism and find an analytical solution for the U(1)U(1) gauge field valid for any warp factor. Using this solution we find that the only condition necessary for localization is that the bulk geometry is asymptotically AdS. Therefore, our solution has an universal validity for any warp factor and is independent of the particular model considered. We also show that the model has no tachyonic modes. Finally, we study the scalar components of the DD-vector field. As a general result, we show that if we consider the coupling with the tensor and the Ricci scalar in higher co-dimensions, there is an indication that both sectors will be localized. As a concrete example, the above techniques are applied for the intersecting brane model. We obtain that the branes introduce boundary conditions that fix all parameters of the model in such a way that both sectors, gauge and scalar fields, are confined.Comment: 26 pages, 5 figures, Accepted version for publication in JHE

    Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals

    Get PDF
    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f0f^0 actinyl series (UO22+_2^{2+}, NpO22+_2^{2+}, PuO22+_2^{2+}), the isoelectronic NUN, and Thorium (ThO, ThO2+^{2+}) and Nobelium (NoO, NoO2_2) oxides are studied.Comment: 8 page

    On Effective Spacetime Dimension in the Ho\v{r}ava-Lifshitz Gravity

    Get PDF
    In this manuscript we explicitly compute the effective dimension of spacetime in some backgrounds of Ho\v{r}ava-Lifshitz (H-L) gravity. For all the cases considered, the results are compatible with a dimensional reduction of the spacetime to d+1=2d+1=2, at high energies (ultraviolet limit), which is confirmed by other quantum gravity approaches, as well as to d+1=4d+1=4, at low energies (infrared limit). This is obtained by computing the free energy of massless scalar and gauge fields. We find that the only effect of the background is to change the proportionality constant between the internal energy and temperature. Firstly, we consider both the non-perturbative and perturbative models involving the matter action, without gravitational sources but with manifest time and space symmetry breaking, in order to calculate modifications in the Stephan-Boltzmann law. When gravity is taken into account, we assume a scenario in which there is a spherical source with mass MM and radius RR in thermal equilibrium with radiation, and consider the static and spherically symmetric solution of the H-L theory found by Kehagias-Sfetsos (K-S), in the weak and strong field approximations. As byproducts, for the weak field regime, we used the current uncertainty of the solar radiance measurements to establish a constraint on the ω\omega free parameter of the K-S solution. We also calculate the corrections, due to gravity, to the recently predicted attractive force that black bodies exert on nearby neutral atoms and molecules.Comment: references adde

    Profiles of Strong Permitted Lines in Classical T Tauri Stars

    Full text link
    We present a spectral analysis of 30 T Tauri stars observed with the Hamilton echelle spectrograph over more than a decade. One goal is to test magnetospheric accretion model predictions. Observational evidence previously published supporting the model, such as emission line asymmetry and a high frequency of redshifted absorption components, are considered. We also discuss the relation between different line forming regions and search for good accretion rate indicators. In this work we confirm several important points of the models, such as the correlation between accretion and outflow, broad emission components that are mostly central or slightly blueshifted and only the occasional presence of redshifted absorption. We also show, however, that the broad emission components supposedly formed in the magnetospheric accretion flow only partially support the models. Unlike the predictions, they are sometimes redshifted, and are mostly found to be symmetric. The published theoretical profiles do not have a strong resemblance to our observed ones. We emphasize the need for accretion models to include a strong turbulent component before their profiles will match the observations. The effects of rotation, and the outflow components, will also be needed to complete the picture.Comment: 25 pages including 9 figures, 3 tables, accepted for publication in the Astronomical Journa
    • …
    corecore