13 research outputs found
Π€ΠΈΠ½Π°Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΠ€Π ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ², ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΠΌ ΠΊΡΠΈΡΠ΅ΡΠΈΡΠΌ ΠΊΠ°ΡΠ΅ΡΡΠ²Π°
The main content of this article is to describe βclimate financeβ and βgreen financeβ in detail, as implemented by International Financial Institutions (IFIs) and their pertinent environmental and social project quality criteria. The approach of this article is to perceive and understand environment-related activities of international financial institutions (IFIs) as part of a societal learning process, and consequently to describe their βenvironmental and social project quality criteriaβ as an expression of such ongoing societal learning processes. What can our readership, related to global finance, profit from such a comparison? Against the expectation of many, IFIs already implemented efficient rules for redirecting global funds to climate and environmental projects β and have thus performed a successful βact of societal learningβ. The βenvironmental and social project quality criteriaβ have played a crucial role in convincing economic and administrative actors (i. e., learners in our context) to behave in a climatecompatible manner. Thus, the lesson can be drawn from the domain of βsocietal learningβ to the domain of βindividual learningβ that clear and transparent criteria sets are decisive for a rule-based societal transformation. This article shows that a criteriabased selection process provides the best results for long-term societal interest; in this case climate protection.Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ Β«ΠΊΠ»ΠΈΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΈΠ½Π°Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡΒ» ΠΈ Β«Π·Π΅Π»Π΅Π½ΠΎΠ³ΠΎ ΡΠΈΠ½Π°Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡΒ», ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΠΌΡΡ
ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΌΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΠΌΠΈ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡΠΌΠΈ (ΠΠ€Π), ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ². Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΠΎΡΠΏΡΠΈΡΡΠΈΠ΅ ΠΈ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ Ρ ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅Π΄ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΡ
ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΡ
ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΉ (ΠΠ€Π) ΠΊΠ°ΠΊ ΡΠ°ΡΡΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΡΡΠ²Π° ΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ Β«ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ²Β» ΠΊΠ°ΠΊ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡΡΠ΅Π³ΠΎΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΡΡΠ²Π°. Π§ΡΠΎ ΠΌΠΎΠΆΠ΅Ρ ΠΈΠ·Π²Π»Π΅ΡΡ ΠΈΠ· ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π°ΡΠ° ΡΠΈΡΠ°ΡΠ΅Π»ΡΡΠΊΠ°Ρ Π°ΡΠ΄ΠΈΡΠΎΡΠΈΡ, ΡΠ²ΡΠ·Π°Π½Π½Π°Ρ Ρ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΡΠΌΠΈ ΡΠΈΠ½Π°Π½ΡΠ°ΠΌΠΈ? ΠΠΎΠΏΡΠ΅ΠΊΠΈ ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΡΠΌ ΠΌΠ½ΠΎΠ³ΠΈΡ
, ΠΠ€Π ΡΠΆΠ΅ Π²Π½Π΅Π΄ΡΠΈΠ»ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠ΅ ΠΏΡΠ°Π²ΠΈΠ»Π° ΠΏΠ΅ΡΠ΅ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ² Π½Π° ΠΏΡΠΎΠ΅ΠΊΡΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΊΠ»ΠΈΠΌΠ°ΡΠ° ΠΈ ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅Π΄Ρ, ΡΠΎΠ²Π΅ΡΡΠΈΠ², ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ, ΡΡΠΏΠ΅ΡΠ½ΡΠΉ Β«Π°ΠΊΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΡΡΠ²Π°Β». ΠΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΊΡΠΈΡΠ΅ΡΠΈΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ² ΡΡΠ³ΡΠ°Π»ΠΈ ΡΠ΅ΡΠ°ΡΡΡΡ ΡΠΎΠ»Ρ Π² ΡΠ±Π΅ΠΆΠ΄Π΅Π½ΠΈΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²Π½ΡΡ
ΡΡΠ±ΡΠ΅ΠΊΡΠΎΠ² (Ρ.Π΅. ΠΎΠ±ΡΡΠ°ΡΡΠΈΡ
ΡΡ Π² Π½Π°ΡΠ΅ΠΌ ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅) Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°ΡΡ ΠΊΠ»ΠΈΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ ΡΠΎΠ²ΠΌΠ΅ΡΡΠΈΠΌΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠΎΠΊ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ Β«ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΡΡΠ²Π°Β» Π² ΠΎΠ±Π»Π°ΡΡΡ Β«ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡΒ» ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΏΡΠΎΠ·ΡΠ°ΡΠ½ΡΠ΅ Π½Π°Π±ΠΎΡΡ ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅Π² ΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ°ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΡΡΠ²Π° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΡΠ°Π²ΠΈΠ». ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΡΠ΅ΡΡ ΠΎΡΠ±ΠΎΡΠ° ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅Π² ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ Π½Π°ΠΈΠ»ΡΡΡΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π΄Π»Ρ Π΄ΠΎΠ»Π³ΠΎΡΡΠΎΡΠ½ΡΡ
ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠΎΠ² ΠΎΠ±ΡΠ΅ΡΡΠ²Π°, Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ β Π΄Π»Ρ Π·Π°ΡΠΈΡΡ ΠΊΠ»ΠΈΠΌΠ°ΡΠ°
Technical Report: Influence of an enhanced use of biomass for energy on the CO2 concentration in the atmosphere
In this study, the influence of different strategies of 'biomass for energy' was modelled by means of a global carbon cycle model in order to compute the annual atmospheric CO2 concentration until the year 2100. A 'Combined Energy and Biosphere Model' was developed on the basis of the OsnabrΓΌck Biosphere Model (OBM)
Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΈ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΡ ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΡΠ΄Π½ΠΈΡΠ΅ΡΡΠ²Π° Π² ΡΡΠ΅ΡΠ΅ Π·Π°ΡΠΈΡΡ ΠΊΠ»ΠΈΠΌΠ°ΡΠ°: ΠΎΠΏΡΡ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΡ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΡ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΉ
The author explores various aspects of cooperation of International Financial Institutions (IFIs) between themselves (blending), as well as with state and commercial structures of different countries in the field of solving international problems related to climate change on the planet. The aim of the article is to describe the role of IFIs, forms of cooperation and the financial instruments used for funding activities for sustainable economic development and solving climate problems in the world and in individual states. The author applies general scientific cognition methods, such as analysis, synthesis and systemic approach. The study generalizes the experience of IFIs in addressing the issues based on international statistics in areas such as sustainable economic development and global climate change. The paper provides the statistical analysis of individual countries, in particular, in the Central Asian region. The author makes a conclusion about the importance of the dialectical interconnection between the methods of collective and individual learning in solving global problems, as well as the development of universal procedures, instruments and criteria for assessing the achievement of goals. The formulated proposals may be of further use to regulators, relevant ministries and departments, as well as companies in cooperation with IFIs in the implementation of infrastructure and climate protection projects.ΠΠ²ΡΠΎΡ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ ΡΠΎΡΡΡΠ΄Π½ΠΈΡΠ΅ΡΡΠ²Π° ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΡ
ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΡ
ΠΈΠ½ΡΡΠΈΡΡΡΠΎΠ² (IFIs) ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ Ρ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ ΠΈ ΠΊΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΡΡΠΊΡΡΡΠ°ΠΌΠΈ ΡΠ°Π·Π½ΡΡ
ΡΡΡΠ°Π½ Π² ΡΡΠ΅ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ ΠΊΠ»ΠΈΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌΠΈ Π½Π° ΠΏΠ»Π°Π½Π΅ΡΠ΅. Π¦Π΅Π»Ρ ΡΡΠ°ΡΡΠΈ β ΡΠ°ΡΠΊΡΡΡΡ ΡΠΎΠ»Ρ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΡ
ΠΈΠ½ΡΡΠΈΡΡΡΠΎΠ², ΡΠΎΡΠΌΡ ΡΠΎΡΡΡΠ΄Π½ΠΈΡΠ΅ΡΡΠ²Π° ΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΠ΅ ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΠ΅ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΡ Π΄Π»Ρ ΡΠΈΠ½Π°Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠΏΡΠΈΡΡΠΈΠΉ ΠΏΠΎ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠΌΡ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ»ΠΈΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π² ΠΌΠΈΡΠ΅ ΠΈ Π² ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π°Ρ
. ΠΠ²ΡΠΎΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅Ρ ΠΎΠ±ΡΠ΅Π½Π°ΡΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΏΠΎΠ·Π½Π°Π½ΠΈΡ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ Π°Π½Π°Π»ΠΈΠ·, ΡΠΈΠ½ΡΠ΅Π·, ΡΠΈΡΡΠ΅ΠΌΠ½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ ΠΎΠΏΡΡ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΡ
ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΡ
ΠΈΠ½ΡΡΠΈΡΡΡΠΎΠ² Π² ΡΡΠ΅ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°ΡΡΠΎΠ½ΡΡΡΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠΈ Π² ΡΠ°ΠΊΠΈΡ
ΡΡΠ΅ΡΠ°Ρ
, ΠΊΠ°ΠΊ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ΅ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΠΈ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΡΠ΅ ΠΊΠ»ΠΈΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ. Π’Π°ΠΊΠΆΠ΅ ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π° ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠ° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΡΡΠ°Π½, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π¦Π΅Π½ΡΡΠ°Π»ΡΠ½ΠΎ-ΠΠ·ΠΈΠ°ΡΡΠΊΠΎΠ³ΠΎ ΡΠ΅Π³ΠΈΠΎΠ½Π°. Π‘Π΄Π΅Π»Π°Π½ Π²ΡΠ²ΠΎΠ΄ ΠΎ Π²Π°ΠΆΠ½ΠΎΡΡΠΈ Π΄ΠΈΠ°Π»Π΅ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ, Π° ΡΠ°ΠΊΠΆΠ΅ Π²ΡΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅Π΄ΡΡ, ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠ² ΠΈ ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅Π² ΠΎΡΠ΅Π½ΠΊΠΈ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»ΠΈ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ°ΠΌΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌΠΈ ΠΌΠΈΠ½ΠΈΡΡΠ΅ΡΡΡΠ²Π°ΠΌΠΈ ΠΈ Π²Π΅Π΄ΠΎΠΌΡΡΠ²Π°ΠΌΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΡΠΌΠΈ ΠΏΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Ρ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΌΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΠΌΠΈ ΠΈΠ½ΡΡΠΈΡΡΡΠ°ΠΌΠΈ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΠΈ ΠΏΡΠΈΡΠΎΠ΄ΠΎΠΎΡ
ΡΠ°Π½Π½ΡΡ
ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ²
ΠΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠ΅ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΠ΅ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΠΈΡ Π²ΠΊΠ»Π°Π΄ Π² Π·Π°ΡΠΈΡΡ ΠΊΠ»ΠΈΠΌΠ°ΡΠ°
The aim of this article is to show in which way international financial institutions (IFIs) can contribute to climate protection projects. The principles of IFIsβ project cycles are explained in the context of the new blending tool. The cooperation with other donors stands in the centre of EU project funding and the notion of leveraging allows to quantify the cooperative effect among different donors. The bulk of this article describes the most relevant IFIs and national development banks with an international focus: Green Climate Fund (GCF), European Investment Bank (EIB), European Bank for Reconstruction and Development (EBRD), French Development Agency (AFD), German Development Bank (KfW), World Bank (WB), Asian Development Bank (ADB), and the Asian Infrastructure Investment Bank (AIIB). For all these IFIs, descriptions are provided and their main fields of actions identified. The procedure of application (the βproject cycleβ) is illustrated and an overview of their strategies is given. Thus, this article seeks to provide practical guidance on how to cooperate with IFIs and to direct funds into substantially valid and responsible climate projects.Π¦Π΅Π»Ρ Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠΈ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ, ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠ΅ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΠ΅ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ (ΠΠ€Π) ΠΌΠΎΠ³ΡΡ Π²Π½ΠΎΡΠΈΡΡ Π²ΠΊΠ»Π°Π΄ Π² ΠΏΡΠΎΠ΅ΠΊΡΡ ΠΏΠΎ Π·Π°ΡΠΈΡΠ΅ ΠΊΠ»ΠΈΠΌΠ°ΡΠ°. ΠΡΠΈΠ½ΡΠΈΠΏΡ ΠΏΡΠΎΠ΅ΠΊΡΠ½ΡΡ
ΡΠΈΠΊΠ»ΠΎΠ² ΠΠ€Π ΡΠ°Π·ΡΡΡΠ½ΡΡΡΡΡ Π² ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠ² ΡΠΈΠ½Π°Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ. Π‘ΠΎΡΡΡΠ΄Π½ΠΈΡΠ΅ΡΡΠ²ΠΎ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ Π΄ΠΎΠ½ΠΎΡΠ°ΠΌΠΈ Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΌΠ΅ΡΡΠΎ Π² ΡΠΈΠ½Π°Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ² ΠΠ‘, Π° ΠΏΠΎΠ½ΡΡΠΈΠ΅ Β«Π»Π΅Π²Π΅ΡΠΈΠ΄ΠΆΒ» ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΡΡΠ΅ΠΊΡ ΡΠΎΡΡΡΠ΄Π½ΠΈΡΠ΅ΡΡΠ²Π° ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ Π΄ΠΎΠ½ΠΎΡΠ°ΠΌΠΈ. ΠΠΎΠ»ΡΡΠ°Ρ ΡΠ°ΡΡΡ ΡΡΠ°ΡΡΠΈ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½ΡΡ
ΠΠ€Π ΠΈ Π½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
Π±Π°Π½ΠΊΠΎΠ² ΡΠ°Π·Π²ΠΈΡΠΈΡ, ΠΈΠΌΠ΅ΡΡΠΈΡ
ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΡΡΡ: ΠΠ΅Π»Π΅Π½ΡΠΉ ΠΊΠ»ΠΈΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΠ½Π΄ (ΠΠΠ€), ΠΠ²ΡΠΎΠΏΠ΅ΠΉΡΠΊΠΈΠΉ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΡΠΉ Π±Π°Π½ΠΊ (ΠΠΠ), ΠΠ²ΡΠΎΠΏΠ΅ΠΉΡΠΊΠΈΠΉ Π±Π°Π½ΠΊ ΡΠ΅ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ (ΠΠΠ Π ), Π€ΡΠ°Π½ΡΡΠ·ΡΠΊΠΎΠ΅ Π°Π³Π΅Π½ΡΡΡΠ²ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ (Π€ΠΠ ), ΠΠ΅ΡΠΌΠ°Π½ΡΠΊΠΈΠΉ Π±Π°Π½ΠΊ ΡΠ°Π·Π²ΠΈΡΠΈΡ (KfW), ΠΡΠ΅ΠΌΠΈΡΠ½ΡΠΉ Π±Π°Π½ΠΊ (ΠΠ), ΠΠ·ΠΈΠ°ΡΡΠΊΠΈΠΉ Π±Π°Π½ΠΊ ΡΠ°Π·Π²ΠΈΡΠΈΡ (ΠΠΠ ) ΠΈ ΠΠ·ΠΈΠ°ΡΡΠΊΠΈΠΉ Π±Π°Π½ΠΊ ΠΈΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΉ (ΠΠΠΠ). ΠΠ»Ρ Π΄Π°Π½Π½ΡΡ
ΠΠ€Π Π΄Π°Π½Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΈΡ
ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ. ΠΡΠΎΠΈΠ»Π»ΡΡΡΡΠΈΡΠΎΠ²Π°Π½Π° ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ° ΠΏΠΎΠ΄Π°ΡΠΈ Π·Π°ΡΠ²ΠΊΠΈ (Β«ΠΏΡΠΎΠ΅ΠΊΡΠ½ΡΠΉ ΡΠΈΠΊΠ»Β») ΠΈ Π΄Π°Π½ ΠΎΠ±Π·ΠΎΡ ΠΈΡ
ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΉ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π² Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΠΏΡΠΈΠ½ΡΡΠ° ΠΏΠΎΠΏΡΡΠΊΠ° Π΄Π°ΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΎ ΡΠΎΠΌ, ΠΊΠ°ΠΊ ΡΠΎΡΡΡΠ΄Π½ΠΈΡΠ°ΡΡ Ρ ΠΠ€Π ΠΈ Π½Π°ΠΏΡΠ°Π²Π»ΡΡΡ ΡΡΠ΅Π΄ΡΡΠ²Π° Π½Π° ΠΎΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ Π·Π½Π°ΡΠΈΠΌΡΡ
ΠΈ ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΠΊΠ»ΠΈΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ².
Revisiting the Temperature Dependent Ionic Conductivity of Yttria Stabilized Zirconia (YSZ)
The temperature dependent conductivity of yttria stabilized zirconia (YSZ) exhibits a bending in Arrheniusβ plots which is frequently discussed in terms of free and associated oxygen vacancies. However, the very high doping concentration in YSZ leads to such a strong defect interaction that the concept of free vacancies becomes highly questionable. Therefore, the temperature dependent conductivity of YSZ is reconsidered. The conductivity of YSZ with different doping concentration was measured in a broad temperature range. The data are analyzed in terms of two different barrier heights that have to be passed along an average path of an oxygen vacancy in YSZ (two barrier model). For 8β10 mol% yttria, the two barriers are in the range of 0.6 eV and 1.1β1.2 eV, respectively. The conductivity and thus the barrier heights also depend on the cooling rate after a high temperature pre-treatment. This indicates that different frozen-in distributions of dopants affect the vacancy motion by different energy landscapes. Temporarily existing defect configurations, possibly with a strong effect of repulsive oxygen vacancy interaction, are suggested as the reason of high barriers. Future dynamic ab-initio calculations may reveal whether this modified model of the YSZ conductivity is mechanistically meaningful.Fonds zur FΓΆrderung der Wissenschaftlichen Forschun