38 research outputs found

    Fragile X Related Protein 1 Clusters with Ribosomes and Messenger RNAs at a Subset of Dendritic Spines in the Mouse Hippocampus

    Get PDF
    The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system

    Functional Characterization of the Dendritically Localized mRNA Neuronatin in Hippocampal Neurons

    Get PDF
    Local translation of dendritic mRNAs plays an important role in neuronal development and synaptic plasticity. Although several hundred putative dendritic transcripts have been identified in the hippocampus, relatively few have been verified by in situ hybridization and thus remain uncharacterized. One such transcript encodes the protein neuronatin. Neuronatin has been shown to regulate calcium levels in non-neuronal cells such as pancreatic or embryonic stem cells, but its function in mature neurons remains unclear. Here we report that neuronatin is translated in hippocampal dendrites in response to blockade of action potentials and NMDA-receptor dependent synaptic transmission by TTX and APV. Our study also reveals that neuronatin can adjust dendritic calcium levels by regulating intracellular calcium storage. We propose that neuronatin may impact synaptic plasticity by modulating dendritic calcium levels during homeostatic plasticity, thereby potentially regulating neuronal excitability, receptor trafficking, and calcium dependent signaling

    Dynamic visualization of local protein synthesis in hippocampal neurons

    Get PDF
    Using pharmacological approaches, several recent studies suggest that local protein synthesis is required for synaptic plasticity. Convincing demonstrations of bona fide dendritic protein synthesis in mammalian neurons are rare, however. We developed a protein synthesis reporter in which the coding sequence of green fluorescent protein is flanked by the 5' and 3' untranslated regions from CAMKII-alpha, conferring both dendritic mRNA localization and translational regulation. In cultured hippocampal neurons, we show that BDNF, a growth factor involved in synaptic plasticity, stimulates protein synthesis of the reporter in intact, mechanically, or "optically" isolated dendrites. The stimulation of protein synthesis is blocked by anisomycin and not observed in untreated neurons. In addition, dendrites appear to possess translational hot spots, regions near synapses where protein synthesis consistently occurs over time

    Light-mediated inhibition of protein synthesis

    Get PDF
    The regulation of protein synthesis is vital for a host of cell biological processes, but investigating roles for protein synthesis have been hindered by the inability to selectively interfere with it. To inhibit protein synthesis with spatial and temporal control, we have developed a photo-releasable anisomycin compound, N-([6-bromo-7-hydroxycoumarin-4-yl]methyloxycarbonyl)anisomycin (Bhc-Aniso), that can be removed through exposure to UV light. The area of protein synthesis inhibition can be restricted to a small light-exposed region or, potentially, the volume of two-photon excitation if a pulsed IR laser is the light source. We have tested the compound's effectiveness with an in vitro protein-translation system, CHO cells, HEK293 cells, and neurons. The photo-released anisomycin can inhibit protein synthesis in a spatially restricted manner, which will enable the specific inhibition of protein synthesis in subsets of cells with temporal and spatial precision

    Presynaptic CamKII regulates activity-dependent axon terminal growth

    No full text
    Spaced synaptic depolarization induces rapid axon terminal growth and the formation of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). Here, we identify a novel presynaptic function for the Calcium/Calmodulin-dependent Kinase II (CamKII) protein in the control of activity-dependent synaptic growth. Consistent with this function, we find that both total and phosphorylated CamKII (p-CamKII) are enriched in axon terminals. Interestingly, p-CamKII appears to be enriched at the presynaptic axon terminal membrane. Moreover, levels of total CamKII protein within presynaptic boutons globally increase within one hour following stimulation. These effects correlate with the activity-dependent formation of new presynaptic boutons. The increase in presynaptic CamKII levels is inhibited by treatment with cyclohexamide suggesting a protein-synthesis dependent mechanism. We have previously found that acute spaced stimulation rapidly downregulates levels of neuronal microRNAs (miRNAs) that are required for the control of activity-dependent axon terminal growth at this synapse. The rapid activity-dependent accumulation of CamKII protein within axon terminals is inhibited by overexpression of activity-regulated miR-289 in motor neurons. Experiments in vitro using a CamKII translational reporter show that miR-289 can directly repress the translation of CamKII via a sequence motif found within the CamKII 3’ untranslated region (UTR). Collectively, our studies support the idea that presynaptic CamKII acts downstream of synaptic stimulation and the miRNA pathway to control rapid activity-dependent changes in synapse structure

    BDNF-induced changes in the expression of the translation machinery in hippocampal neurons: protein levels and dendritic mRNA

    No full text
    BDNF plays a key role in neuronal development, in short- and long-term changes in synaptic activity, and in neuronal survival. These effects are mediated, to a great extent, by changes in protein synthesis. We conducted a gel-based proteome profiling of the long-term (12 h) effects of BDNF in cultured hippocampal neurons. BDNF changed the abundance of proteins involved in (i) Nucleobase, nucleoside, nucleotide and nucleic acid metabolism, (ii) protein metabolism, (iii) carbohydrate metabolism, (iv) regulators of apoptosis, and (v) regulators of cell proliferation. A large majority of the identified proteins involved in translation activity were upregulated, but not all changes in the protein content were correlated with alterations in the corresponding mRNA. The upregulation of Seryl-aminoacyl-tRNA-synthetase and Eef2 was sensitive to the mTOR inhibitor rapamycin, as determined by Western blot. Since the mRNAs for proteins involved in translation represent a large fraction of the diversity of dendritic mRNAs, we investigated the effect of BDNF on the distribution of the transcripts in the soma versus neurite compartments. The increase in mRNA for proteins of the translation machinery in the soma was differentially coupled with the upregulation of neurite transcripts. BDNF also downregulated specific mRNAs in neurite compartments suggesting that the neurotrophin may act by regulating mRNA stability and thereby affecting the dendritic protein content
    corecore