849,331 research outputs found

    On perturbations of the isometric semigroup of shifts on the semiaxis

    Full text link
    We study perturbations (τ~t)t0(\tilde\tau_t)_{t\ge 0} of the semigroup of shifts (τt)t0(\tau_t)_{t\ge 0} on L2(R+)L^2(\R_+) with the property that τ~tτt\tilde\tau_t - \tau_t belongs to a certain Schatten-von Neumann class \gS_p with p1p\ge 1. We show that, for the unitary component in the Wold-Kolmogorov decomposition of the cogenerator of the semigroup (τ~t)t0(\tilde\tau_t)_{t\ge 0}, {\it any singular} spectral type may be achieved by \gS_1 perturbations. We provide an explicit construction for a perturbation with a given spectral type based on the theory of model spaces of the Hardy space H2H^2. Also we show that we may obtain {\it any} prescribed spectral type for the unitary component of the perturbed semigroup by a perturbation from the class \gS_p with p>1p>1

    Monodromy transform and the integral equation method for solving the string gravity and supergravity equations in four and higher dimensions

    Full text link
    The monodromy transform and corresponding integral equation method described here give rise to a general systematic approach for solving integrable reductions of field equations for gravity coupled bosonic dynamics in string gravity and supergravity in four and higher dimensions. For different types of fields in space-times of D4D\ge 4 dimensions with d=D2d=D-2 commuting isometries -- stationary fields with spatial symmetries, interacting waves or partially inhomogeneous cosmological models, the string gravity equations govern the dynamics of interacting gravitational, dilaton, antisymmetric tensor and any number n0n\ge 0 of Abelian vector gauge fields (all depending only on two coordinates). The equivalent spectral problem constructed earlier allows to parameterize the infinite-dimensional space of local solutions of these equations by two pairs of \cal{arbitrary} coordinate-independent holomorphic d×dd\times d- and d×nd\times n- matrix functions u±(w),v±(w){\mathbf{u}_\pm(w), \mathbf{v}_\pm(w)} of a spectral parameter ww which constitute a complete set of monodromy data for normalized fundamental solution of this spectral problem. The "direct" and "inverse" problems of such monodromy transform --- calculating the monodromy data for any local solution and constructing the field configurations for any chosen monodromy data always admit unique solutions. We construct the linear singular integral equations which solve the inverse problem. For any \emph{rational} and \emph{analytically matched} (i.e. u+(w)u(w)\mathbf{u}_+(w)\equiv\mathbf{u}_-(w) and v+(w)v(w)\mathbf{v}_+(w)\equiv\mathbf{v}_-(w)) monodromy data the solution for string gravity equations can be found explicitly. Simple reductions of the space of monodromy data leads to the similar constructions for solving of other integrable symmetry reduced gravity models, e.g. 5D minimal supergravity or vacuum gravity in D4D\ge 4 dimensions.Comment: RevTex 7 pages, 1 figur
    corecore