436 research outputs found

    Time-dependent currents of 1D bosons in an optical lattice

    Full text link
    We analyse the time-dependence of currents in a 1D Bose gas in an optical lattice. For a 1D system, the stability of currents induced by accelerating the lattice exhibits a broad crossover as a function of the magnitude of the acceleration, and the strength of the inter-particle interactions. This differs markedly from mean-field results in higher dimensions. Using the infinite Time Evolving Block Decimation algorithm, we characterise this crossover by making quantitative predictions for the time-dependent behaviour of the currents and their decay rate. We also compute the time-dependence of quasi-condensate fractions which can be measured directly in experiments. We compare our results to calculations based on phase-slip methods, finding agreement with the scaling as the particle density increases, but with significant deviations near unit filling.Comment: 19 pages, 10 figure

    Trimer liquids and crystals of polar molecules in coupled wires

    Full text link
    We investigate the pairing and crystalline instabilities of bosonic and fermionic polar molecules confined to a ladder geometry. By means of analytical and quasi-exact numerical techniques, we show that gases of composite molecular dimers as well as trimers can be stabilized as a function of the density difference between the wires. A shallow optical lattice can pin both liquids, realizing crystals of composite bosons or fermions. We show that these exotic quantum phases should be realizable under current experimental conditions in finite-size confining potentials.Comment: 5 pages, 3 figures plus additional material; Accepted for publication in Phys. Rev. Let

    Strongly correlated gases of Rydberg-dressed atoms: quantum and classical dynamics

    Full text link
    We discuss techniques to generate long-range interactions in a gas of groundstate alkali atoms, by weakly admixing excited Rydberg states with laser light. This provides a tool to engineer strongly correlated phases with reduced decoherence from inelastic collisions and spontaneous emission. As an illustration, we discuss the quantum phases of dressed atoms with dipole-dipole interactions confined in a harmonic potential, as relevant to experiments. We show that residual spontaneous emission from the Rydberg state acts as a heating mechanism, leading to a quantum-classical crossover.Comment: 4 pages, 4 figure

    A superfluid-droplet crystal and a free-space supersolid in a dipole-blockaded gas

    Get PDF
    A novel supersolid phase is predicted for an ensemble of Rydberg atoms in the dipole-blockade regime, interacting via a repulsive dipolar potential "softened" at short distances. Using exact numerical techniques, we study the low temperature phase diagram of this system, and observe an intriguing phase consisting of a crystal of mesoscopic superfluid droplets. At low temperature, phase coherence throughout the whole system, and the ensuing bulk superfluidity, are established through tunnelling of identical particles between neighbouring droplets.Comment: 4 pages, 4 figure

    Bose-Einstein Condensation of Erbium

    Full text link
    We report on the achievement of Bose-Einstein condensation of erbium atoms and on the observation of magnetic Feshbach resonances at low magnetic field. By means of evaporative cooling in an optical dipole trap, we produce pure condensates of 168^{168}Er, containing up to 7×1047 \times 10^{4} atoms. Feshbach spectroscopy reveals an extraordinary rich loss spectrum with six loss resonances already in a narrow magnetic-field range up to 3 G. Finally, we demonstrate the application of a low-field Feshbach resonance to produce a tunable dipolar Bose-Einstein condensate and we observe its characteristic d-wave collapse.Comment: 4 pages, 3 figure

    The Leonid meteor shower 1996-2002: Results from forward-scatter radio observations

    Get PDF
    Results from the observations of the Leonid meteor shower in 1996-2002 by the BLM (Bologna-Lecce-Modra) forward-scatter radio system for meteor observation carried out along two baselines, Bologna-Lecce (Italy)and Bologna-Modra (Slovakia), are presented and discussed. The activity curves of long-duration echoes (≥ 8 s)and their variations indicate multiple peak activity which are attributed to filamentary structure of the stream. The mass distribution exponents in the period of the shower maximum shows significant changes in individual years, with a high contribution of larger particles chiefly in 1998
    corecore