10 research outputs found

    The charge ordered state in half-doped Bi-based manganites studied by 17^{17}O and 209^{209}Bi NMR

    Full text link
    We present a 209^{209}Bi and 17^{17}O NMR study of the Mn electron spin correlations developed in the charge ordered state of Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} and Bi0.5_{0.5}Ca0.5_{0.5}MnO3_{3}. The unusually large local magnetic field 209Hloc^{209}H_{loc} indicates the dominant 6s26s^{2} character of the lone electron pair of Bi3+^{3+}-ions in both compounds. The mechanism connecting the ss character of the lone pairs to the high temperature of charge ordering TCOT_{CO} is still not clarified. The observed difference in 209Hloc^{209}H_{loc} for Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} to Bi0.5_{0.5}Ca0.5_{0.5}MnO3_{3} is probably due to a decrease in the canting of the staggered magnetic moments of Mn3+^{3+}-ions from. The modification of the 17^{17}O spectra below TCOT_{CO} demonstrates that the line due to the apical oxygens is a unique local tool to study the development of the Mn spin correlations. In the AF state the analysis of the 17^{17}O spectrum of Pr0.5_{0.5}Ca0.5_{0.5}MnO3_{3} and Bi0.5_{0.5}Sr0.5_{0.5}MnO3_{3} prompts us to try two different theoretical descriptions of the charge-ordered state, a site-centered model for the first manganite and a bond-centered model for the second one.Comment: 10 pages, 7 figure

    Spin Susceptibility of Ga-Stabilized delta-Pu Probed by {69}^Ga NMR

    Full text link
    Spin susceptibility of stabilized \delta phase in the Pu-Ga alloy is studied by measuring {69,71}^Ga NMR spectra and nuclear spin-lattice relaxation rate {69}T_{1}^{-1} in the temperature range 5 - 350 K. The shift ({69}^K) of the {69,71}^Ga NMR line and {69}^T_{1}^{-1} are controlled correspondingly by the static and the fluctuating in time parts of local magnetic field arisen at nonmagnetic gallium due to transferred hyperfine coupling with the nearest f electron environment of the more magnetic Pu. The nonmonotonic with a maximum around 150 K behavior of {69}^K(T) \chi_{s,5f}(T) is attributed to the peculiarities in temperature dependence of the f electron spin susceptibility \chi_{s,5f}(T) in \delta phase of plutonium. The temperature reversibility being observed in {69}^K(T) data provides strong evidence for an electronic instability developed with T in f electron bands near the Fermi energy and accompanied with a pseudogap-like decrease of \chi_{s,5f}(T) at T<150 K. The NMR data at high temperature are in favor of the mainly localized character of 5f electrons in \delta phase of the alloy with characteristic spin-fluctuation energy \Gamma(T) T^{0.35(5)}, which is close to $\Gamma(T) T^{0.5} predicted by Cox et al. [J. Appl. Phys. 57, 3166 (1985)] for 3D Kondo-system above T_Kondo}. The dynamic spin correlations of 5f electrons become essential to consider for {69}^T_{1}^{-1}(T) only at T<100 K. However, no NMR evidences favoring formation of the static magnetic order in \delta-Pu were revealed down to 5K .Comment: 6 pages, 4 figure

    Wronskian of derivations

    No full text

    ROLE OF Na+, K+, 2Cl– -COTRANSPORTER AND POTASSIUM CONDUCTIVITY IN THE REALIZATION OF THE EFFECT OF CARBON MONOXIDE, IN THE SMOOTH MUSCLE OF VISCERAL ORGANS

    No full text
    The aim of this study was to investigate the role of the Na+, K+, 2Cl– -transport and potassium conductance, in the implementation of the effects of carbon monoxide in the SMC taenia coli and ureter of guinea pig.Materials and methods. The study was conducted by the method of double saccharose bridge. Was studied the effects of carbon monoxide donor CORM2 in ureter and smooth muscle of guinea pig of taenia coli, in normal Krebs solution, against inhibitor-bumetanide and potassium channel blocker tetraethylammonium chloride (TEA). Studied the effects of bumetanide in normal Krebs solution and the background of TEA.Main results. CORM2 causes inhibition of contractile activity of SMC taenia coli and guinea pig ureter. Its effect is weakened by bumetanide and TEA. Bumetanide causes inhibition of contractile activity of SMC taenia coli, and its effect is weakened by TEA.Conclusions. In this way, it shows that there are tissue-specific mechanisms of interrelation effects CO and ion conductivity
    corecore