1,249 research outputs found

    Electric field dependence of thermal conductivity of a granular superconductor: Giant field-induced effects predicted

    Full text link
    The temperature and electric field dependence of electronic contribution to the thermal conductivity (TC) of a granular superconductor is considered within a 3D model of inductive Josephson junction arrays. In addition to a low-temperature maximum of zero-field TC K(T,0) (controlled by mutual inductance L_0 and normal state resistivity R_n), the model predicts two major effects in applied electric field: (i) decrease of the linear TC, and (ii) giant enhancement of the nonlinear (i.e., grad T-dependent) TC with [K(T,E)-K(T,0)]/K(T,0) reaching 500% for parallel electric fields E=E_T (E_T=S_0|grad T| is an "intrinsic" thermoelectric field). A possiblity of experimental observation of the predicted effects in granular superconductors is discussed.Comment: 5 LaTeX pages (jetpl.sty included), 2 EPS figures. To be published in JETP Letter

    Peculiarities in produced particles emission in 208Pb + Ag(Br) interactions at 158 A GeV/c

    Full text link
    The angular structures of particles produced in 208Pb induced collisions with Ag(Br) nuclei in an emulsion detector at 158 A GeV/c have been investigated. Nonstatistical ring-like substructures in azimuthal plane of the collision have been found and their parameters have been determined. The indication on the formation of the ring-like substructures from two symmetrical emission cones - one in the forward and other in the backward direction in the center-of mass system have been obtained. The ring-like substructures parameters have been determined. The experimental results are in an agreement with I.M. Dremin idea, that mechanism of the ring-like substructures formation in nuclear collisions is similar to that of Cherenkov electromagnetic radiation.Comment: 10 pages, 7 figures, Report at the HADRON STRUCTURE'04 Conference, Smolenice, Slovakia, 30.8.-3.9.200

    Investigation of Changing Volt-Ampere Characteristics of AlGaInP Heterostructures with Multiple Quantum Wells under Ionizing Radiation

    Get PDF
    The results of research into degradation of volt-ampere characteristics of light emitting diodes produced on the base of AlGaInP heterostructures with multiple quantum wells are presented on the example of light emitting diodes (emission wavelengths 623 nm and 590 nm) under gamma quantum and fast neutron radiation in passive powering mode. The shifts of volt-ampere characteristics into the higher voltage range have been observed in conditions of increasing neutron fluence and radiation dose. The observed increase in the resistance of ohmic contacts is caused by the rising resistance of adjacent area, which in its turn results from the changing mobility of charge carriers. The latter varies with the growth of introduced defects under irradiation. Two different areas of current generation have been identified. A mechanism of current generation depends on injected charge carriers in the range of mid-level electron injection. Moreover, the range of high electron injection is distinguished by changing resistance of light emitting diode cores alongside with current generation conditioned by charge carrier injection

    Structure of a bacterial type IV secretion core complex at subnanometre resolution

    Get PDF
    Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1-11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane-spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O-layer inserted in the outer membrane and the I-layer inserted in the inner membrane. While the structure of the O-layer has been solved by X-ray crystallography, there is no detailed structural information on the I-layer. Using high-resolution cryo-electron microscopy and molecular modelling combined with biochemical approaches, we determined the I-layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived
    corecore