2,548 research outputs found
Limitations of Linear Dichroism Spectroscopy for Elucidating Structural Issues of Light-Harvesting Aggregates in Chlorosomes
Linear dichroism (LD) spectroscopy is a widely used technique for studying the mutual orientation of the transition-dipole moments of the electronically excited states of molecular aggregates. Often the method is applied to aggregates where detailed information about the geometrical arrangement of the monomers is lacking. However, for complex molecular assemblies where the monomers are assembled hierarchically in tiers of supramolecular structural elements, the method cannot extract well-founded information about the monomer arrangement. Here we discuss this difficulty on the example of chlorosomes, which are the light-harvesting aggregates of photosynthetic green-(non) sulfur bacteria. Chlorosomes consist of hundreds of thousands of bacteriochlorophyll molecules that self-assemble into secondary structural elements of curved lamellar or cylindrical morphology. We exploit data from polarization-resolved fluorescence-excitation spectroscopy performed on single chlorosomes for reconstructing the corresponding LD spectra. This reveals that LD spectroscopy is not suited for benchmarking structural models in particular for complex hierarchically organized molecular supramolecular assemblies
P4-ATPases:lipid flippases in cell membranes
Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Among these ATP-driven transporters, the P4 subfamily of P-type ATPases (P4-ATPases) comprises lipid flippases that catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of cell membranes. While initially characterized as aminophospholipid translocases, recent studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates, including lysophospholipids and synthetic alkylphospholipids. At the same time, the cellular processes known to be directly or indirectly affected by this class of transporters have expanded to include the regulation of membrane traffic, cytoskeletal dynamics, cell division, lipid metabolism, and lipid signaling. In this review, we will summarize the basic features of P4-ATPases and the physiological implications of their lipid transport activity in the cell
Knockout studies reveal an important role of <i>plasmodium</i> lipoic acid protein ligase a1 for asexual blood stage parasite survival
Lipoic acid (LA) is a dithiol-containing cofactor that is essential for the function of a-keto acid dehydrogenase complexes. LA acts as a reversible acyl group acceptor and 'swinging arm' during acyl-coenzyme A formation. The cofactor is post-translationally attached to the acyl-transferase subunits of the multienzyme complexes through the action of octanoyl (lipoyl): <i>N</i>-octanoyl (lipoyl) transferase (LipB) or lipoic acid protein ligases (LplA). Remarkably, apicomplexan parasites possess LA biosynthesis as well as scavenging pathways and the two pathways are distributed between mitochondrion and a vestigial organelle, the apicoplast. The apicoplast-specific LipB is dispensable for parasite growth due to functional redundancy of the parasite's lipoic acid/octanoic acid ligases/transferases. In this study, we show that <i>LplA1</i> plays a pivotal role during the development of the erythrocytic stages of the malaria parasite. Gene disruptions in the human malaria parasite <i>P.falciparum</i> consistently were unsuccessful while in the rodent malaria model parasite <i>P. berghei</i> the <i>LplA1</i> gene locus was targeted by knock-in and knockout constructs. However, the <i>LplA1</i> <sup>(-)</sup> mutant could not be cloned suggesting a critical role of LplA1 for asexual parasite growth <i>in vitro</i> and <i>in vivo</i>. These experimental genetics data suggest that lipoylation during expansion in red blood cells largely occurs through salvage from the host erythrocytes and subsequent ligation of LA to the target proteins of the malaria parasite
Live Birth Rates after Active Immunization with Partner Lymphocytes
Although many potential causes have been established for recurrent implantation failure (RIF) and recurrent miscarriage (RM), about 50% of these remain idiopathic. Scientific research is focused on immunological risk factors. In the present study, we aim to evaluate live birth rates after immunization with paternal lymphocytes (lymphocyte immunotherapy (LIT)). This retrospective study consisted of 148 couples with a history of RM and/or RIF. The women underwent immunization with lymphocytes of their respective partners from November 2017 to August 2019. Fifty-five patients (43%) had live births. Stratified by indication (RM, RIF, combined), live birth rates in the RM and the combined group were significantly higher than that in the RIF group (53%, 59% and 33%, respectively, p = 0.02). The difference was especially noticeable during the first 90 days after immunization (conception rate leading to live births: 31%, 23% and 8% for RM, the combined group and RIF, respectively; p = 0.005), while there was no difference between groups during the later follow-up. LIT was associated with high live birth rates, especially in women with recurrent miscarriage. In view of the limited data from randomized studies, LIT cannot be recommended as routine therapy. However, it may be considered in individual cases
Predictive value of synaptic plasticity for functional decline in patients with multiple sclerosis.
BACKGROUND
Previous research suggested that quadripulse (QPS)-induced synaptic plasticity is associated with both cognitive and motor function in patients with multiple sclerosis (MS) and does not appear to be reduced compared to healthy controls (HCs).
OBJECTIVE
This study aimed to explore the relationship between the degree of QPS-induced plasticity and clinically significant decline in motor and cognitive functions over time. We hypothesized that MS patients experiencing functional decline would exhibit lower levels of baseline plasticity compared to those without decline.
METHODS
QPS-induced plasticity was evaluated in 80 MS patients (56 with relapsing-remitting MS and 24 with progressive MS), and 69 age-, sex-, and education-matched HCs. Cognitive and motor functions, as well as overall disability status were evaluated annually over a median follow-up period of 2 years. Clinically meaningful change thresholds were predefined for each outcome measure. Linear mixed-effects models, Cox proportional hazard models, logistic regression, and receiver-operating characteristic analysis were applied to analyse the relationship between baseline plasticity and clinical progression in the symbol digit modalities test, brief visuospatial memory test revised (BVMT-R), nine-hole peg test (NHPT), timed 25-foot walk test, and expanded disability status scale.
RESULTS
Overall, the patient cohort showed no clinically relevant change in any functional outcome over time. Variability in performance was observed across time points in both patients and HCs. MS patients who experienced clinically relevant decline in manual dexterity and/or visuospatial learning and memory had significantly lower levels of synaptic plasticity at baseline compared to those without such decline (NHPT: β = -0.25, p = 0.02; BVMT-R: β = -0.50, p = 0.005). Receiver-operating characteristic analysis underscored the predictive utility of baseline synaptic plasticity in discerning between patients experiencing functional decline and those maintaining stability only for visuospatial learning and memory (area under the curve = 0.85).
CONCLUSION
Our study suggests that QPS-induced plasticity could be linked to clinically relevant functional decline in patients with MS. However, to solidify these findings, longer follow-up periods are warranted, especially in cohorts with higher prevalences of functional decline. Additionally, the variability in cognitive performance in both patients with MS and HCs underscores the importance of conducting further research on reliable change based on neuropsychological tests
Cholestenoic acid, an endogenous cholesterol metabolite, is a potent γ-secretase modulator.
BackgroundAmyloid-β (Aβ) 42 has been implicated as the initiating molecule in the pathogenesis of Alzheimer's disease (AD); thus, therapeutic strategies that target Aβ42 are of great interest. γ-Secretase modulators (GSMs) are small molecules that selectively decrease Aβ42. We have previously reported that many acidic steroids are GSMs with potencies ranging in the low to mid micromolar concentration with 5β-cholanic acid being the most potent steroid identified GSM with half maximal effective concentration (EC50) of 5.7 μM.ResultsWe find that the endogenous cholesterol metabolite, 3β-hydroxy-5-cholestenoic acid (CA), is a steroid GSM with enhanced potency (EC50 of 250 nM) relative to 5β-cholanic acid. CA i) is found in human plasma at ~100-300 nM concentrations ii) has the typical acidic GSM signature of decreasing Aβ42 and increasing Aβ38 levels iii) is active in in vitro γ-secretase assay iv) is made in the brain. To test if CA acts as an endogenous GSM, we used Cyp27a1 knockout (Cyp27a1-/-) and Cyp7b1 knockout (Cyp7b1-/-) mice to investigate if manipulation of cholesterol metabolism pathways relevant to CA formation would affect brain Aβ42 levels. Our data show that Cyp27a1-/- had increased brain Aβ42, whereas Cyp7b1-/- mice had decreased brain Aβ42 levels; however, peripheral dosing of up to 100 mg/kg CA did not affect brain Aβ levels. Structure-activity relationship (SAR) studies with multiple known and novel CA analogs studies failed to reveal CA analogs with increased potency.ConclusionThese data suggest that CA may act as an endogenous GSM within the brain. Although it is conceptually attractive to try and increase the levels of CA in the brain for prevention of AD, our data suggest that this will not be easily accomplished
Feasibility of gadoxetate disodium enhanced 3D T1 MR cholangiography (MRC) with a specific inversion recovery prepulse for the assessment of the hepatobiliary system
Aim: To compare the potential of a gadoxetate disodium enhanced navigator-triggered 3D T1 magnetic-resonance cholangiography (MRC) sequence with a specific inversion recovery prepulse to T2-weighted MRCP for assessment of the hepatobiliary system.
Materials and methods: 30 patients (12 male, 18 female) prospectively underwent conventional navigator-triggered 3D turbo spin-echo T2-weighted MRCP and 3D T1 MRC with a specific inversion pulse to minimise signal from the liver 30 minutes after administration of gadoxetate disodium on a 1.5 T MRI system. For qualitative evaluation, biliary duct depiction was assessed segmentally following a 5-point Likert scale. Visualisation of hilar structures as well as image quality was recorded. Additionally, the extrahepatic bile ducts were assessed quantitatively by calculation of signal-to-noise ratios (SNR).
Results: The advantages of T1 3D MRC include reduced affection of image quality by bowel movement and robust depiction of the relative position of the extrahepatic bile ducts in relation to the portal vein and the duodenum compared to T2 MRCP. However, overall T1 3D MRC did not significantly (p > 0.05) improve the biliary duct depiction compared to T2 MRCP in all segments: Common bile duct 4.1 vs. 4.4, right hepatic duct 3.6 vs. 4.2, left hepatic duct 3.5 vs. 4.1. Image quality did not differ significantly (p > 0.05) between both sequences (3.6 vs. 3.5). SNR measurements for the hepatobiliary system did not differ significantly (p > 0.05) between navigator-triggered T1 3D MRC and T2 MRCP.
Conclusions: This preliminary study demonstrates that T1 3D MRC of a specific inversion recovery pre-pulse has potential to complement T2 MRCP, especially for the evaluation of liver structures close to the hilum in the diagnostic work-up of the biliary system in patients receiving gadoxetate disodium
Colorimetric Chemical Differentiation and Detection of Phosphorus in Eutrophic and High Particulate Waters: Advantages of a New Monitoring Approach
Phosphorus (P) is a key factor forcing eutrophication in limnic and marine systems, and all monitoring programs for water quality accordingly include P determinations. However, traditional monitoring does not allow an analysis of the different components involved in the P cycle taking place in the water column. Nonetheless, the implementation of measures addressing eutrophication requires a full understanding of the processes involved in the transformation and transport of P, in all its chemical forms. In this study, the P categories present in a river and its estuary in northern Germany, which discharge into the Baltic Sea, were characterized. Using the molybdenum blue method we found that the classification of P into the traditional fractions (DIP, DOP, POP) applied in the ocean cannot be applied to turbid waters such as rivers because interferences between the fractions seems to occur. Therefore a new nomenclature has been introduced. In addition to total phosphorus (TP) and dissolved molybdate-reactive phosphorus (DRP; previously referred to as inorganic phosphorus), dissolved non-molybdate-reactive phosphorus (DNP), particulate molybdatereactive phosphorus (PRP), and particulate non-molybdate-reactive phosphorus (PNP) were distinguished. The high spatial and temporal variations in the proportions of these forms with respect to the TP concentration well-demonstrate the complexity of the P cycle and the involved P fractions and emphasize the need for expanded monitoring approach. The potential of eutrophication could be underestimated if not all P categories were considered. With the new operational nomenclature the common and standardized molybdenum blue reaction could be used to implement the analysis of various P components into regular monitoring programs
- …