2 research outputs found

    Determination of amino acid and fatty acid composition of goldband goatfish [Upeneus moluccensis (Bleeker, 1855)] fishing from the Gulf of Antalya (Turkey)

    No full text
    Abstract In this study, we aimed to determine the basic food components, fatty acids and amino acids, and variations in these components with months in goldband goatfish (Upeneus moluccensis) that fishing from Gulf of Antalya. As a result of the analyzes, the crude fat values were determined between 1.43 and 3.78%, and the crude protein values were determined between 20.79 and 22.16%. The most abundant fatty acids were determined: palmitic acid (C16:0), stearic acid (C18:0), palmitoleic acid (C16:1c9), oleic acid (C18:1c9), linoleic acid (C18:2n-6), eicosatrienoic acid (C20:3n-3), arachidonic acid (C20:4n-6), eicosapentaenoic acid (C20:5n-3), docosapentaenoic acid (C22:5n-6), and docosahexaenoic acid (C22:6n-3). The most abundant amino acids were determined lysine and leucine, aspartic acid, glutamic acid, alanine, and glycine. The differentiations of essential nutrient components, fatty acids, and amino acids were found generally significant (P < 0.05)

    Distinct brain oscillatory responses for the perception and identification of one's own body from other's body

    No full text
    The body recognition process includes complex visual processing, the sensation, perception, and distinction stages of the stimulus. This study examined this process by using the time-frequency analysis of EEG signals and analyzed the obtained data by using the event-related oscillations method. This study aimed to examine the oscillatory brain responses and distinguish one's own body from other's body. In the present study, 17 young adults were included and the EEGs were recorded with 32 electrodes placed in different locations. Event-related power spectrum and phase-locking analyzes were performed. ITC and ERSP data were analyzed using 2 (condition) x 11 (location) x 2 (hemisphere) ANOVA Design. As we observed a prolonged response in the theta band in the grand averages, we included the time variable in the overall model. As a result, we found that the phase-locking and the event-related power spectrum of the theta response in recognizing one's own body were higher when compared to the phase-locking and the event-related power spectrum of the theta response in recognizing others' body (p < 0.05). When the time variable was included, the early theta response was more phase-locked and had a higher power spectrum compared to the late theta response (p < 0.05). As a result of the power spectrum analysis, the condition x hemisphere interaction effect in the beta band was higher in the left hemisphere regarding increased responses in recognizing one's own body (p < 0.05). As a result of ITC, the main effect of the condition was higher in the recognition of the stimulus of one's own body (p < 0.05). Finally, the theta oscillator response stood out in distinguishing one's own body from other's body. Similarly, the power spectrum in the beta response was higher in the left hemisphere, and this finding is consistent with the literature
    corecore