30 research outputs found

    An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer

    Full text link
    We present an experimental setup for laser-based angle-resolved time-of-flight (LARTOF) photoemission. Using a picosecond pulsed laser, photons of energy 10.5 eV are generated through higher harmonic generation in xenon. The high repetition rate of the light source, variable between 0.2-8 MHz, enables high photoelectron count rates and short acquisition times. By using a Time-of-Flight (ToF) analyzer with angle-resolving capabilities electrons emitted from the sample within a circular cone of up to \pm15 degrees can be collected. Hence, simultaneous acquisition of photoemission data for a complete area of the Brillouin zone is possible. The current photon energy enables bulk sensitive measurements, high angular resolution and the resulting covered momentum space is large enough to enclose the entire Brillouin zone in cuprate high-Tc superconductors. Fermi edge measurements on polycrystalline Au shows an energy resolution better than 5 meV. Data from a test measurement of the Au(111) surface state is presented along with measurements of the Fermi surface of the high-Tc superconductor Bi2212.Comment: 9 pages, 7 figure

    Direct observation of decoupled Dirac states at the interface between topological and normal insulators

    Full text link
    Several proposed applications and exotic effects in topological insulators rely on the presence of helical Dirac states at the interface between a topological and a normal insulator. In the present work, we have used low-energy angle-resolved photoelectron spectroscopy to uncover and characterize the interface states of Bi2_2Se3_3 thin films and Bi2_2Te3_3/Bi2_2Se3_3 heterostuctures grown on Si(111). The results establish that Dirac fermions are indeed present at the topological-normal-insulator boundary and absent at the topological-topological-insulator interface. Moreover, it is demonstrated that band bending present within the topological-insulator films leads to a substantial separation of the interface and surface states in energy. These results pave the way for further studies and the realization of interface-related phenomena in topological-insulator thin-film heterostructures.Comment: 9 pages, 5 figure

    Mild hypothermia reduces cardiac post-ischemic reactive hyperemia

    Get PDF
    BACKGROUND: In experimentally induced myocardial infarction, mild hypothermia (33–35°C) is beneficial if applied prior to ischemia or reperfusion. Hypothermia, when applied after reperfusion seems to confer little or no benefit. The mechanism by which hypothermia exerts its cell-protective effect during cardiac ischemia remains unclear. It has been hypothesized that hypothermia reduces the reperfusion damage; the additional damage incurred upon the myocardium during reperfusion. Reperfusion results in a massive increase in blood flow, reactive hyperemia, which may contribute to reperfusion damage. We postulated that hypothermia could attenuate the post-ischemic reactive hyperemia. METHODS: Sixteen 25–30 kg pigs, in a closed chest model, were anesthetized and temperature was established in all pigs at 37°C using an intravascular cooling catheter. The 16 pigs were then randomized to hypothermia (34°C) or control (37°C). The left main coronary artery was then catheterized with a PCI guiding catheter. A Doppler flow wire was placed in the mid part of the LAD and a PCI balloon was then positioned proximal to the Doppler wire but distal to the first diagonal branch. The LAD was then occluded for ten minutes in all pigs. Coronary blood flow was measured before, during and after ischemia/reperfusion. RESULTS: The peak flow seen during post-ischemic reactive hyperemia (during the first minutes of reperfusion) was significantly reduced by 43 % (p < 0.01) in hypothermic pigs compared to controls. CONCLUSION: Mild hypothermia significantly reduces post-ischemic hyperemia in a closed chest pig model. The reduction of reactive hyperemia during reperfusion may have an impact on cardiac reperfusion injury

    Coronary Hemodynamics in Patients With Severe Aortic Stenosis and Coronary Artery Disease Undergoing Transcatheter Aortic Valve Replacement: Implications for Clinical Indices of Coronary Stenosis Severity.

    Get PDF
    In this study, a systematic analysis was conducted of phasic intracoronary pressure and flow velocity in patients with severe aortic stenosis (AS) and coronary artery disease, undergoing transcatheter aortic valve replacement (TAVR), to determine how AS affects: 1) phasic coronary flow; 2) hyperemic coronary flow; and 3) the most common clinically used indices of coronary stenosis severity, instantaneous wave-free ratio and fractional flow reserve. A significant proportion of patients with severe aortic stenosis (AS) have concomitant coronary artery disease. The effect of the valve on coronary pressure, flow, and the established invasive clinical indices of stenosis severity have not been studied. Twenty-eight patients (30 lesions, 50.0% men, mean age 82.1 ± 6.5 years) with severe AS and coronary artery disease were included. Intracoronary pressure and flow assessments were performed at rest and during hyperemia immediately before and after TAVR. Flow during the wave-free period of diastole did not change post-TAVR (29.78 ± 14.9 cm/s vs. 30.81 ± 19.6 cm/s; p = 0.64). Whole-cycle hyperemic flow increased significantly post-TAVR (33.44 ± 13.4 cm/s pre-TAVR vs. 40.33 ± 17.4 cm/s post-TAVR; p = 0.006); this was secondary to significant increases in systolic hyperemic flow post-TAVR (27.67 ± 12.1 cm/s pre-TAVR vs. 34.15 ± 17.5 cm/s post-TAVR; p = 0.02). Instantaneous wave-free ratio values did not change post-TAVR (0.88 ± 0.09 pre-TAVR vs. 0.88 ± 0.09 post-TAVR; p = 0.73), whereas fractional flow reserve decreased significantly post-TAVR (0.87 ± 0.08 pre-TAVR vs. 0.85 ± 0.09 post-TAVR; p = 0.001). Systolic and hyperemic coronary flow increased significantly post-TAVR; consequently, hyperemic indices that include systole underestimated coronary stenosis severity in patients with severe AS. Flow during the wave-free period of diastole did not change post-TAVR, suggesting that indices calculated during this period are not vulnerable to the confounding effect of the stenotic aortic valve

    Influenza Vaccination After Myocardial Infarction: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial.

    Get PDF
    BACKGROUND: Observational and small, randomized studies suggest that influenza vaccine may reduce future cardiovascular events in patients with cardiovascular disease. METHODS: We conducted an investigator-initiated, randomized, double-blind trial to compare inactivated influenza vaccine with saline placebo administered shortly after myocardial infarction (MI; 99.7% of patients) or high-risk stable coronary heart disease (0.3%). The primary end point was the composite of all-cause death, MI, or stent thrombosis at 12 months. A hierarchical testing strategy was used for the key secondary end points: all-cause death, cardiovascular death, MI, and stent thrombosis. RESULTS: Because of the COVID-19 pandemic, the data safety and monitoring board recommended to halt the trial before attaining the prespecified sample size. Between October 1, 2016, and March 1, 2020, 2571 participants were randomized at 30 centers across 8 countries. Participants assigned to influenza vaccine totaled 1290 and individuals assigned to placebo equaled 1281; of these, 2532 received the study treatment (1272 influenza vaccine and 1260 placebo) and were included in the modified intention to treat analysis. Over the 12-month follow-up, the primary outcome occurred in 67 participants (5.3%) assigned influenza vaccine and 91 participants (7.2%) assigned placebo (hazard ratio, 0.72 [95% CI, 0.52-0.99]; P=0.040). Rates of all-cause death were 2.9% and 4.9% (hazard ratio, 0.59 [95% CI, 0.39-0.89]; P=0.010), rates of cardiovascular death were 2.7% and 4.5%, (hazard ratio, 0.59 [95% CI, 0.39-0.90]; P=0.014), and rates of MI were 2.0% and 2.4% (hazard ratio, 0.86 [95% CI, 0.50-1.46]; P=0.57) in the influenza vaccine and placebo groups, respectively. CONCLUSIONS: Influenza vaccination early after an MI or in high-risk coronary heart disease resulted in a lower risk of a composite of all-cause death, MI, or stent thrombosis, and a lower risk of all-cause death and cardiovascular death, as well, at 12 months compared with placebo. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02831608

    X-Shooting ULLYSES: Massive stars at low metallicity: I. Project description

    Get PDF
    Observations of individual massive stars, super-luminous supernovae, gamma-ray bursts, and gravitational wave events involving spectacular black hole mergers indicate that the low-metallicity Universe is fundamentally different from our own Galaxy. Many transient phenomena will remain enigmatic until we achieve a firm understanding of the physics and evolution of massive stars at low metallicity (Z). The Hubble Space Telescope has devoted 500 orbits to observing ∼250 massive stars at low Z in the ultraviolet (UV) with the COS and STIS spectrographs under the ULLYSES programme. The complementary X-Shooting ULLYSES (XShootU) project provides an enhanced legacy value with high-quality optical and near-infrared spectra obtained with the wide-wavelength coverage X-shooter spectrograph at ESOa's Very Large Telescope. We present an overview of the XShootU project, showing that combining ULLYSES UV and XShootU optical spectra is critical for the uniform determination of stellar parameters such as effective temperature, surface gravity, luminosity, and abundances, as well as wind properties such as mass-loss rates as a function of Z. As uncertainties in stellar and wind parameters percolate into many adjacent areas of astrophysics, the data and modelling of the XShootU project is expected to be a game changer for our physical understanding of massive stars at low Z. To be able to confidently interpret James Webb Space Telescope spectra of the first stellar generations, the individual spectra of low-Z stars need to be understood, which is exactly where XShootU can deliver

    Impact of COVID-19 Pandemic on TAVR Activity: A Worldwide Registry

    Get PDF
    Background: The COVID-19 pandemic had a considerable impact on the provision of structural heart intervention worldwide. Our objectives were: 1) to assess the impact of the COVID-19 pandemic on transcatheter aortic valve replacement (TAVR) activity globally; and 2) to determine the differences in the impact according to geographic region and the demographic, development, and economic status of diverse international health care systems. Methods: We developed a multinational registry of global TAVR activity and invited individual TAVR sites to submit TAVR implant data before and during the COVID-19 pandemic. Specifically, the number of TAVR procedures performed monthly from January 2019 to December 2021 was collected. The adaptive measures to maintain TAVR activity by each site were recorded, as was a variety of indices relating to type of health care system and national economic indices. The primary subject of interest was the impact on TAVR activity during each of the pandemic waves (2020 and 2021) compared with the same period pre–COVID-19 (2019). Results: Data were received from 130 centers from 61 countries, with 14 subcontinents and 5 continents participating in the study. Overall, TAVR activity increased by 16.7% (2,337 procedures) between 2018 and 2019 (ie, before the pandemic), but between 2019 and 2020 (ie, first year of the pandemic), there was no significant growth (–0.1%; –10 procedures). In contrast, activity again increased by 18.9% (3,085 procedures) between 2020 and 2021 (ie, second year of the pandemic). During the first pandemic wave, there was a reduction of 18.9% (945 procedures) in TAVR activity among participating sites, while during the second and third waves, there was an increase of 6.7% (489 procedures) and 15.9% (1,042 procedures), respectively. Further analysis and results of this study are ongoing and will be available at the time of the congress. Conclusion: The COVID-19 pandemic initially led to a reduction in the number of patients undergoing TAVR worldwide, although health care systems subsequently adapted, and the number of TAVR recipients continued to grow in subsequent COVID-19 pandemic waves. Categories: STRUCTURAL: Valvular Disease: Aorti

    Protocol for the development of a CONSORT extension for RCTs using cohorts and routinely collected health data.

    Get PDF
    Background: Randomized controlled trials (RCTs) are often complex and expensive to perform. Less than one third achieve planned recruitment targets, follow-up can be labor-intensive, and many have limited real-world generalizability. Designs for RCTs conducted using cohorts and routinely collected health data, including registries, electronic health records, and administrative databases, have been proposed to address these challenges and are being rapidly adopted. These designs, however, are relatively recent innovations, and published RCT reports often do not describe important aspects of their methodology in a standardized way. Our objective is to extend the Consolidated Standards of Reporting Trials (CONSORT) statement with a consensus-driven reporting guideline for RCTs using cohorts and routinely collected health data. Methods: The development of this CONSORT extension will consist of five phases. Phase 1 (completed) consisted of the project launch, including fundraising, the establishment of a research team, and development of a conceptual framework. In phase 2, a systematic review will be performed to identify publications (1) that describe methods or reporting considerations for RCTs conducted using cohorts and routinely collected health data or (2) that are protocols or report results from such RCTs. An initial "long list" of possible modifications to CONSORT checklist items and possible new items for the reporting guideline will be generated based on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) and The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statements. Additional possible modifications and new items will be identified based on the results of the systematic review. Phase 3 will consist of a three-round Delphi exercise with methods and content experts to evaluate the "long list" and generate a "short list" of key items. In phase 4, these items will serve as the basis for an in-person consensus meeting to finalize a core set of items to be included in the reporting guideline and checklist. Phase 5 will involve drafting the checklist and elaboration-explanation documents, and dissemination and implementation of the guideline. Discussion: Development of this CONSORT extension will contribute to more transparent reporting of RCTs conducted using cohorts and routinely collected health data

    Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes

    Get PDF
    Objectives: The aim of this study was to investigate the clinical outcomes of patients deferred from coronary revascularization on the basis of instantaneous wave-free ratio (iFR) or fractional flow reserve (FFR) measurements in stable angina pectoris (SAP) and acute coronary syndromes (ACS). // Background: Assessment of coronary stenosis severity with pressure guidewires is recommended to determine the need for myocardial revascularization. // Methods: The safety of deferral of coronary revascularization in the pooled per-protocol population (n = 4,486) of the DEFINE-FLAIR (Functional Lesion Assessment of Intermediate Stenosis to Guide Revascularisation) and iFR-SWEDEHEART (Instantaneous Wave-Free Ratio Versus Fractional Flow Reserve in Patients With Stable Angina Pectoris or Acute Coronary Syndrome) randomized clinical trials was investigated. Patients were stratified according to revascularization decision making on the basis of iFR or FFR and to clinical presentation (SAP or ACS). The primary endpoint was major adverse cardiac events (MACE), defined as the composite of all-cause death, nonfatal myocardial infarction, or unplanned revascularization at 1 year. // Results: Coronary revascularization was deferred in 2,130 patients. Deferral was performed in 1,117 patients (50%) in the iFR group and 1,013 patients (45%) in the FFR group (p < 0.01). At 1 year, the MACE rate in the deferred population was similar between the iFR and FFR groups (4.12% vs. 4.05%; fully adjusted hazard ratio: 1.13; 95% confidence interval: 0.72 to 1.79; p = 0.60). A clinical presentation with ACS was associated with a higher MACE rate compared with SAP in deferred patients (5.91% vs. 3.64% in ACS and SAP, respectively; fully adjusted hazard ratio: 0.61 in favor of SAP; 95% confidence interval: 0.38 to 0.99; p = 0.04). // Conclusions: Overall, deferral of revascularization is equally safe with both iFR and FFR, with a low MACE rate of about 4%. Lesions were more frequently deferred when iFR was used to assess physiological significance. In deferred patients presenting with ACS, the event rate was significantly increased compared with SAP at 1 year

    Accessing the spin structure of buried electronic states

    Full text link
    In spin- and angle-resolved photoemission spectroscopy (SARPES) the energy-momentum dispersion of electronic states in crystalline solids is measured along with the spin direction of the photoemitted electrons. The technique therefore allows for mapping out a material's band structure in a spin resolved fashion. By conducting SARPES measurements using low-energy photons, the spin sensitivity of the technique can be combined an increased bulk probe depth, provided by the large electron inelastic mean-free path at these kinetic energies, to directly access the spin structure of electronic states at buried interfaces. Here, we demonstrate this capability by using SARPES to determine the spin polarization of photoelectrons emitted from a 6-nm-thick film of the topological insulator Bi2_2Se3_3 using photons with an energy of 8.5 eV. By modelling the expected spin structure in the film, we show that the complex spin polarization that is observed is the integrated spin signal from spin-polarized states at the surface, bulk and buried interface (bottom surface) of the topological-insulator film. Our results therefore allows us to directly determine the spin texture of the buried Dirac interface state. This capability is highly attractive for state-of-the art spectroscopic measurements of the spin-physics at play in quantum-material based or spintronic devices where spin-polarized interface states define the operational principle of the devices.Comment: 9 pages, 4 figure
    corecore