168 research outputs found

    Production of ultracold heteronuclear YbRb* molecules by photoassociation

    Full text link
    We have produced ultracold heteronuclear YbRb∗^* molecules in a combined magneto-optical trap by photoassociation. The formation of electronically excited molecules close to the dissociation limit was observed by trap loss spectroscopy in mixtures of 87^{87}Rb with 174^{174}Yb and 176^{176}Yb. The molecules could be prepared in a series of vibrational levels with resolved rotational structure, allowing for an experimental determination of the long-range potential in the electronically excited state

    Spatial separation in a thermal mixture of ultracold 174^{174}Yb and 87^{87}Rb atoms

    Full text link
    We report on the observation of unusually strong interactions in a thermal mixture of ultracold atoms which cause a significant modification of the spatial distribution. A mixture of 87^{87}Rb and 174^{174}Yb with a temperature of a few Ό\muK is prepared in a hybrid trap consisting of a bichromatic optical potential superimposed on a magnetic trap. For suitable trap parameters and temperatures, a spatial separation of the two species is observed. We infer that the separation is driven by a large interaction strength between 174^{174}Yb and 87^{87}Rb accompanied by a large three-body recombination rate. Based on this assumption we have developed a diffusion model which reproduces our observations

    Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms

    Full text link
    We have experimentally realized a hybrid trap for ultracold paramagnetic rubidium and diamagnetic ytterbium atoms by combining a bichromatic optical dipole trap for ytterbium with a Ioffe-Pritchard-type magnetic trap for rubidium. In this hybrid trap, sympathetic cooling of five different ytterbium isotopes through elastic collisions with rubidium was achieved. A strong dependence of the interspecies collisional cross section on the mass of the ytterbium isotope was observed.Comment: 4 pages, 4 figure

    Controlled Generation of Dark Solitons with Phase Imprinting

    Full text link
    The generation of dark solitons in Bose-Einstein condensates with phase imprinting is studied by mapping it into the classic problem of a damped driven pendulum. We provide simple but powerful schemes of designing the phase imprint for various desired outcomes. We derive a formula for the number of dark solitons generated by a given phase step, and also obtain results which explain experimental observations.Comment: 4pages, 4 figure

    Strong spin-orbit induced Gilbert damping and g-shift in iron-platinum nanoparticles

    Full text link
    The shape of ferromagnetic resonance spectra of highly dispersed, chemically disordered Fe_{0.2}Pt_{0.8} nanospheres is perfectly described by the solution of the Landau-Lifshitz-Gilbert (LLG) equation excluding effects by crystalline anisotropy and superparamagnetic fluctuations. Upon decreasing temperature, the LLG damping α(T)\alpha(T) and a negative g-shift, g(T)-g_0, increase proportional to the particle magnetic moments determined from the Langevin analysis of the magnetization isotherms. These novel features are explained by the scattering of the q→0q \to 0 magnon from an electron-hole (e/h) pair mediated by the spin-orbit coupling, while the sd-exchange can be ruled out. The large saturation values, α(0)=0.76\alpha(0)=0.76 and g(0)/g0−1=−0.37g(0)/g_0-1=-0.37, indicate the dominance of an overdamped 1 meV e/h-pair which seems to originate from the discrete levels of the itinerant electrons in the d_p=3 nm nanoparticles.Comment: 8 pages, 4 figures, accepted for publication in Phys. Rev. B (http://prb.aps.org/

    Statistical Properties of Interacting Bose Gases in Quasi-2D Harmonic Traps

    Full text link
    The analytical probability distribution of the quasi-2D (and purely 2D) ideal and interacting Bose gas are investigated by using a canonical ensemble approach. Using the analytical probability distribution of the condensate, the statistical properties such as the mean occupation number and particle number fluctuations of the condensate are calculated. Researches show that there is a continuous crossover of the statistical properties from a quasi-2D to a purely 2D ideal or interacting gases. Different from the case of a 3D Bose gas, the interaction between atoms changes in a deep way the nature of the particle number fluctuations.Comment: RevTex, 10pages, 4 figures, E-mail: [email protected]

    Split vortices in optically coupled Bose-Einstein condensates

    Full text link
    We study a rotating two-component Bose-Einstein condensate in which an optically induced Josephson coupling allows for population transfer between the two species. In a regime where separation of species is favored, the ground state of the rotating system displays domain walls with velocity fields normal to them. Such a configuration looks like a vortex split into two halves, with atoms circulating around the vortex and changing their internal state in a continuous way.Comment: 4 EPS pictures, 4 pages; Some errata have been corrected and thep resentation has been slightly revise

    Anisotropic Bose-Einstein condensates and completely integrable dynamical systems

    Full text link
    A Gaussian ansatz for the wave function of two-dimensional harmonically trapped anisotropic Bose-Einstein condensates is shown to lead, via a variational procedure, to a coupled system of two second-order, nonlinear ordinary differential equations. This dynamical system is shown to be in the general class of Ermakov systems. Complete integrability of the resulting Ermakov system is proven. Using the exact solution, collapse of the condensate is analyzed in detail. Time-dependence of the trapping potential is allowed

    Hydrodynamic modes of a 1D trapped Bose gas

    Full text link
    We consider two regimes where a trapped Bose gas behaves as a one-dimensional system. In the first one the Bose gas is microscopically described by 3D mean field theory, but the trap is so elongated that it behaves as a 1D gas with respect to low frequency collective modes. In the second regime we assume that the 1D gas is truly 1D and that it is properly described by the Lieb-Liniger model. In both regimes we find the frequency of the lowest compressional mode by solving the hydrodynamic equations. This is done by making use of a method which allows to find analytical or quasi-analytical solutions of these equations for a large class of models approaching very closely the actual equation of state of the Bose gas. We find an excellent agreement with the recent results of Menotti and Stringari obtained from a sum rule approach.Comment: 15 pages, revtex, 1 figure
    • 

    corecore