38 research outputs found

    The ATLAS Trigger/DAQ Authorlist, version 2.0

    Get PDF
    This is the ATLAS Trigger/DAQ Authorlist, version 2.0, 31 July 200

    The ATLAS Trigger/DAQ Authorlist, version 1.0

    Get PDF
    This is a reference document giving the ATLAS Trigger/DAQ author list, version 1.0 of 20 Nov 2008

    The ATLAS Trigger/DAQ Authorlist, version 3.1

    Get PDF
    This is the ATLAS Trigger/DAQ Authorlist, version 3.1, 17 September 200

    The ATLAS Trigger/DAQ Authorlist, version 3.0

    Get PDF
    This is the ATLAS Trigger/DAQ Authorlist, version 3.0, 11 September 200

    Combinatorial selection of high affinity RNA ligands to live African trypanosomes.

    No full text
    African trypanosomiasis is a parasitic disease caused by a specific class of protozoan organisms. The best-studied representative of that group is Trypanosoma brucei which is transmitted by tsetse flies and multiplies in the blood of many mammals. Trypanosomes evade the immune system by altering their surface structure which is dominated by a layer of a variant surface glycoprotein (VSG). Although invariant surface proteins exist, they are inaccessible to the humoral immune response. Using a combinatorial selection method in conjunction with live trypanosomes as the binding target, we show that short RNA ligands (aptamers) for constant surface components can be isolated. We describe the selection of three classes of RNA aptamers that crosslink to a single 42 kDa protein located within the flagellar pocket of the parasite. The RNAs associate rapidly and with high affinity. They do not discriminate between two different trypanosome VSG variant strains and, furthermore, are able to bind to other trypanosome strains not used in the selection protocol. Thus, the aptamers have the potential to function as markers on the surface of the extracellular parasite and as such they might be modified to function as novel drugs against African trypanosomiasis

    A single mutation in 16S rRNA that affects mRNA binding and translation-termination.

    No full text
    A single base change in 16S rRNA (C726 to G) has previously been shown to have a dramatic effect on protein synthesis in E. coli (1). This paper more specifically details the effects of the mutation on mRNA binding and translation-termination. The in vitro technique of toeprinting (2) was used to demonstrate that 30S subunits containing the mutation 726G had an altered binding affinity for mRNA by comparison to the wild type. In addition, expression of the mutant ribosomes in vivo resulted in exclusive suppression of the UGA nonsense codon. This effect was supported by in vitro studies that showed the mutant ribosomes to have an altered binding affinity for Release Factor-2

    Trypanosoma brucei

    No full text

    The guide RNA database.

    No full text
    Guide RNAs (gRNAs) are small, metabolically stable RNA molecules which perform a pivotal, template-like function during the RNA editing process in kinetoplastid protozoa. The gRNA database currently contains 250 guide RNA sequences as well as secondary and tertiary structure models and other relevant information. The database is made available as a hypertext document accessible via the World Wide Web (WWW) at the URL: http://www.biochem.mpg.de/ goeringe

    The signal for growth rate control and stringent sensitivity in E. coli is not restricted to a particular sequence motif within the promoter region.

    No full text
    Hybrid promoter constructs were used to determine the DNA sequence requirements for stringent and growth rate control within a promoter region. The promoters were obtained by fusing complementing sequence regions located upstream and downstream from the GCGC discriminator motif of the growth rate regulated rRNA P1 promoter and a non-regulated tac promoter variant. The activities and the regulatory response of the hybrid promoters were determined in vivo using a promoter test vector system with the chloramphenicol acetyltransferase (CAT) reporter gene. Measurements were made at different growth rates and after starvation for isoleucine to induce the stringent response. Neither the upstream nor the downstream sequence of P1 relative to the GCGC discriminator motif conferred comparable regulatory features when fused to the complementing sequences of the non-regulated mutant tac promoter. A minor response to amino acid deprivation or changes in the growth rate was noted for the hybrid promoter with the rrnB P1 upstream segment and the tac downstream element, pointing to a slightly different importance of the two sequence elements for regulation. The parallel effects for stringent as well as growth rate regulation of the hybrid promoters supports the view of a common mechanism for both types of control. However, none of the promoter sequence elements on its own was able to restore the complete regulatory behaviour of their 'parent' promoters

    The involvement of base 1054 in 16S rRNA for UGA stop codon dependent translational termination.

    No full text
    The deletion of the highly conserved cytidine nucleotide at position 1054 in E. coli 16S rRNA has been characterized to confer an UGA stop codon specific suppression activity which suggested a functional participation of small subunit rRNA in translational termination. Based on this structure-function correlation we constructed the three point mutations at site 1054, changing the wild-type C residue to an A, G or U base. The mutations were expressed from a complete plasmid encoded rRNA operon (rrnB) using a conditional expression system with the lambda PL-promoter. All three altered 16S rRNA molecules were expressed and incorporated into 70S ribosomal particles. Structural analysis of the protein and 16S rRNA moieties of the mutant ribosomes showed no differences when compared to wild-type particles. The phenotypic analysis revealed that only the 1054G base change led to a significantly reduced generation time of transformed cells, which could be correlated with the inability of the mutant ribosomes to specifically stop at UGA stop codons in vivo. The response towards UAA and UAG termination codons was not altered. Furthermore, in vitro RF-2 termination factor binding experiments indicated that the association behaviour of mutant ribosomes was not changed, enforcing the view that the UGA stop codon suppression is a direct consequence of the rRNA mutation. Taken together, these results argue for a direct participation of that 16S rRNA motif in UGA dependent translational termination and furthermore, suggest that termination factor binding and stop codon recognition are two separate steps of the termination event
    corecore