63 research outputs found
An Atlas for Schistosoma mansoni Organs and Life-Cycle Stages Using Cell Type-Specific Markers and Confocal Microscopy
Schistosomiasis (bilharzia) is a tropical disease caused by trematode parasites (Schistosoma) that affects hundreds of millions of people in the developing world. Currently only a single drug (praziquantel) is available to treat this disease, highlighting the importance of developing new techniques to study Schistosoma. While molecular advances, including RNA interference and the availability of complete genome sequences for two Schistosoma species, will help to revolutionize studies of these animals, an array of tools for visualizing the consequences of experimental perturbations on tissue integrity and development needs to be made widely available. To this end, we screened a battery of commercially available stains, antibodies and fluorescently labeled lectins, many of which have not been described previously for analyzing schistosomes, for their ability to label various cell and tissue types in the cercarial stage of S. mansoni. This analysis uncovered more than 20 new markers that label most cercarial tissues, including the tegument, the musculature, the protonephridia, the secretory system and the nervous system. Using these markers we present a high-resolution visual depiction of cercarial anatomy. Examining the effectiveness of a subset of these markers in S. mansoni adults and miracidia, we demonstrate the value of these tools for labeling tissues in a variety of life-cycle stages. The methodologies described here will facilitate functional analyses aimed at understanding fundamental biological processes in these parasites
Survey on the clinical trial results achieved in Brazil comparing praziquantel and oxamniquine in the treatment of mansoni schistosomiasis
A random, double-blind, parallel group clinical trial program was carried out to compare praziquantel, a recently developed anti-helmintic drug, and oxamniquine, an already established agent for treating mansoni schistosomiasis. Both drugs were administered orally as a single dose, on the average, praziquantel 55 mg/kg and oxamniquine 16 mg/kg BWT. The diagnosis and the parasitological follow-up lasting for a minimum of six months, were based on stool examinations according to Kato/Katz technique. A patient was considered cured if all results were negative and if he had performed at least three post-treatment controls, each one comprising three stool examinations. The finding of a single S. mansoni egg in any stool examination indicated, a therapeutical failure. A total of 267, cases were treated with praziquantel and 272 with oxamniquine. The two groups were homogeneous in regard to patients, age, clinical form of the disease, risk of reinfection and worm burden, relevant factors in the therapeutical response. The incidence and severity of untoward, effects were similar in both groups but abdominal distress and diarrhoea were more frequently reported under praziquantel and dizzines under oxamniquine (p 0.05). Amongst the noncured aptients a reduction of 88.6% and 74.6% in the mean number of eggs/g of feces Was seen following the treatment with praziquantel and oxamniquine, respectively (p < 0.05). In conclusion, in spite of their different chemical, pharmacological and toxicological profiles as well as mechanisms-of-action, inclusively praziquantel already had proved to be 100% active against S. mansoni strains resistant to oxamniquine, both drugs showed comparable tolerance and therapeutical efficacy
Drug Discovery for Schistosomiasis: Hit and Lead Compounds Identified in a Library of Known Drugs by Medium-Throughput Phenotypic Screening
The flatworm disease schistosomiasis infects over 200 million people with just one drug (praziquantel) available—a concern should drug resistance develop. Present drug discovery approaches for schistosomiasis are slow and not conducive to automation in a high-throughput format. Therefore, we designed a three-component screen workflow that positions the larval (schistosomulum) stage of S. mansoni at its apex followed by screens of adults in culture and, finally, efficacy tests in infected mice. Schistosomula are small enough and available in sufficient numbers to interface with automated liquid handling systems and prosecute thousands of compounds in short time frames. We inaugurated the workflow with a 2,160 compound library that includes known drugs in order to cost effectively ‘re-position’ drugs as new therapies for schistosomiasis and/or identify compounds that could be modified to that end. We identify a variety of ‘hit’ compounds (antibiotics, psychoactives, antiparasitics, etc.) that produce behavioral responses (phenotypes) in schistosomula and adults. Tests in infected mice of the most promising hits identified a number of ‘leads,’ one of which compares reasonably well with praziquantel in killing worms, decreasing egg production by the parasite, and ameliorating disease pathology. Efforts continue to more fully automate the workflow. All screen data are posted online as a drug discovery resource
Therapeutical evaluation of different dose regimens of praziquantel in schistosomiasis mansoni, based on the quantitative oogram technique
A clinical trial involving 80 patients of both sexes, from ages 15 to 55, with chronic intestinal or hepatointestinal schistosomiasis mansoni, was carried out to evaluate the therapeutical efficacy of different dose regimens of praziquantel. The patients were randomly allocated into four groups with an equal number of cases and were then treated with one of the following dosages: 60 mg/kg for 1 day; 60 mg/kg daily for 2 days; 60 mg/kg daily for 3 days; and 30 mg/kg daily for 6 days. The assessment of parasitological cure was based on the quantitative oogram technique through rectal mucosa biopsies which were undertaken prior to, as well as, 1,2,4 and 6 months post-treatment. Concurrently, stool examinations according to the qualitative Hoffman, Pons & Janer (HPJ) and the quantitative Kato-Katz (K-K) methods were also performed. The best tolerability was observed with 30 mg/kg daily for 6 days whereas the highest incidence of side-effects (mainly dizziness and nausea) was found with 60 mg/kg daily for 3 days. No serious adverse drug reaction has occurred. The achieved cure rates were: 25% with 60 mg/kg for 1 day; 60% with 60 mg/kg daily for 2 days; 89.5% with 60 mg/kg daily for 3 days; and 90% with 30 mg/kg daily for 6 days. At the same time there has been a downfall of 64%, 73%, 87% and 84% respectively, in the median number of viable S. mansoni ova per gram of tissue. Thus, a very clear direct correlation between dose and effect could be seen. The corresponding cure rates according to stool examinations by HPJ were 39%, 80%, 100% and 95%; by K-K 89%, 100%, 100% and 100%. This discrepancy in results amongst the three parasitological methods is certainly due to their unequal accuracy. In fact, when the number of viable eggs per gram of tissue fell below 5,000 the difference in the percentage of false negative findings between HPJ (28%) and K-K (80%) became significative. When this number dropped to less than 2,000 the percentage of false negative results obtained with HPJ (49%) turned significant in relation to the oogram as well. In conclusion, it has been proven that praziquantel is a highly efficacious agent against S. mansoni infections. If administered at a total dose of 180 mg/kg divided into either 3 or 6 days, it yields a 90% cure rate. Possibly, one could reach 100% by increasing the total dose to 240 mg/kg. Furthermore, it was confirmed that the quantitative oogram technique is the most reliable parasitological method when evaluating the efficacy of new drugs in schistosomiasis mansoni
- …