24 research outputs found

    microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance

    Get PDF
    Tregs play a fundamental role in immune tolerance via control of self-reactive effector T cells (Teffs). This function is dependent on maintenance of a high intracellular cAMP concentration. A number of microRNAs are implicated in the maintenance of Tregs. In this study, we demonstrate that peripheral immune tolerance is critically dependent on posttranscriptional repression of the cAMP-hydrolyzing enzyme phosphodiesterase-3b (Pde3b) by microRNA-142-5p (miR-142-5p). In this manner, miR-142-5p acts as an immunometabolic regulator of intracellular cAMP, controlling Treg suppressive function. Mir142 was associated with a super enhancer bound by the Treg lineage-determining transcription factor forkhead box P3 (FOXP3), and Treg-specific deletion of miR-142 in mice (TregΔ142) resulted in spontaneous, lethal, multisystem autoimmunity, despite preserved numbers of phenotypically normal Tregs. Pharmacological inhibition and genetic ablation of PDE3B prevented autoimmune disease and reversed the impaired suppressive function of Tregs in TregΔ142 animals. These findings reveal a critical molecular switch, specifying Treg function through the modulation of a highly conserved, cell-intrinsic metabolic pathway. Modulation of this pathway has direct relevance to the pathogenesis and treatment of autoimmunity and cancer

    Role and species-specific expression of colon T cell homing receptor GPR15 in colitis

    No full text
    Lymphocyte recruitment maintains intestinal immune homeostasis but also contributes to inflammation. The orphan chemoattractant receptor GPR15 mediates regulatory T cell homing and immunosuppression in the mouse colon. We show that GPR15 is also expressed by mouse T(H)17 and T(H)1 effector cells, and is required for colitis in a model that depends on their trafficking to the colon. In humans GPR15 is expressed by effector cells including pathogenic T(H)2 cells in ulcerative colitis, but is not expressed by regulatory T (T(reg)) cells. The T(H)2 transcriptional activator GATA-3 and the T(reg)–associated transcriptional repressor FOXP3 robustly bind human, but not mouse, GPR15 enhancer sequences, correlating with expression. Our results highlight species differences in GPR15 regulation, and suggest it as a potential therapeutic target for colitis
    corecore