118 research outputs found

    Calcium Homeostasis and Organelle Function in the Pathogenesis of Obesity and Diabetes

    Get PDF
    A number of chronic metabolic pathologies, including obesity, diabetes, cardiovascular disease, asthma, and cancer, cluster together to present the greatest threat to human health. As research in this field has advanced, it has become clear that unresolved metabolic inflammation, organelle dysfunction, and other cellular and metabolic stresses underlie the development of these chronic metabolic diseases. However, the relationship between these systems and pathological mechanisms is poorly understood. Here we discuss the role of cellular Ca2+ homeostasis as a critical mechanism integrating the myriad of cellular and subcellular dysfunctional networks found in metabolic tissues such as liver and adipose tissue in the context of metabolic disease, particularly in obesity and diabetes

    Defective Hepatic Autophagy in Obesity Promotes ER Stress and Causes Insulin Resistance

    Get PDF
    SummaryAutophagy is a homeostatic process involved in the bulk degradation of cytoplasmic components, including damaged organelles and proteins. In both genetic and dietary models of obesity, we observed a severe downregulation of autophagy, particularly in Atg7 expression levels in liver. Suppression of Atg7 both in vitro and in vivo resulted in defective insulin signaling and elevated ER stress. In contrast, restoration of the Atg7 expression in liver resulted in dampened ER stress, enhanced hepatic insulin action, and systemic glucose tolerance in obese mice. The beneficial action of Atg7 restoration in obese mice could be completely prevented by blocking a downstream mediator, Atg5, supporting its dependence on autophagy in regulating insulin action. Our data demonstrate that autophagy is an important regulator of organelle function and insulin signaling and that loss of autophagy is a critical component of defective insulin action seen in obesity

    Serum Fatty Acid-Binding Protein 4 Is a Predictor of Cardiovascular Events in End-Stage Renal Disease

    Get PDF
    BACKGROUND: Fatty acid-binding protein 4 (FABP4/A-FABP/aP2), a lipid chaperone, is expressed in both adipocytes and macrophages. Recent studies have shown that FABP4 is secreted from adipocytes and that FABP4 level is associated with obesity, insulin resistance, and atherosclerosis. However, little is known about the impact of FABP4 concentrations on prognosis. We tested the hypothesis that FABP4 level predicts prognosis of patients with end-stage renal disease (ESRD), a group at high risk for atherosclerosis-associated morbidity and mortality. METHODS AND RESULTS: Biochemical markers including FABP4 were determined in 61 ESRD patients on chronic hemodialysis (HD). Serum FABP4 level in females (404.2±30.5 ng/ml) was significantly higher than that in males (315.8±30.0 ng/ml), and the levels in ESRD patients were about 20-times higher than those in age-, gender- and body mass index (BMI)-matched control subjects with normal renal function. FABP4 level was decreased by 57.2% after HD and was positively correlated with blood pressure, BMI, and levels of lipids and insulin. Multiple regression analysis indicated that HD duration, BMI, and triglycerides level were independent determinants for FABP4 level. ESRD patients with high FABP4 levels had higher cardiovascular mortality during the 7-year follow-up period. Cox proportional hazard regression analysis showed that logarithmically transformed FABP4 level was an independent predictor of cardiovascular death adjusted for age, gender, HD duration, BMI, and triglycerides level (hazard ratio, 7.75; 95% CI, 1.05-25.31). CONCLUSION: These findings suggest that FABP4 level, being related to adiposity and metabolic disorders, is a novel predictor of cardiovascular mortality in ESRD

    A Predominant Role for Parenchymal c-Jun Amino Terminal Kinase (JNK) in the Regulation of Systemic Insulin Sensitivity

    Get PDF
    It has been established that c-Jun N-terminal kinase 1 (JNK1) is essential to the pathogenesis of insulin resistance and type 2 diabetes. Although JNK influences inflammatory signaling pathways, it remains unclear whether its activity in macrophages contributes to adipose tissue inflammation and ultimately to the regulation of systemic metabolism. To address whether the action of this critical inflammatory kinase in bone marrow-derived elements regulates inflammatory responses in obesity and is sufficient and necessary for the deterioration of insulin sensitivity, we performed bone marrow transplantation studies with wild type and JNK1-deficient mice. These studies illustrated that JNK1-deficiency in the bone marrow-derived elements (BMDE) was insufficient to impact macrophage infiltration or insulin sensitivity despite modest changes in the inflammatory profile of adipose tissue. Only when the parenchymal elements lacked JNK1 could we demonstrate a significant increase in systemic insulin sensitivity. These data indicate that while the JNK1 activity in BMDE is involved in metabolic regulation and adipose milieu, it is epistatic to JNK1 activity in the parenchymal tissue for regulation of metabolic homeostasis
    • …
    corecore