107 research outputs found
Particulate Matter Air Pollution: Effects on the Cardiovascular System
Air pollution is a complex mixture of gaseous and particulate components, each of which has detrimental effects on human health. While the composition of air pollution varies greatly depending on the source, studies from across the world have consistently shown that air pollution is an important modifiable risk factor for significantly increased morbidity and mortality. Moreover, clinical studies have generally shown a greater impact of particulate matter (PM) air pollution on health than the gaseous components. PM has wide-ranging deleterious effects on human health, particularly on the cardiovascular system. Both acute and chronic exposure to PM air pollution is associated with increased risk of death from cardiovascular diseases including ischemic heart disease, heart failure, and ischemic/thrombotic stroke. Particulate matter has also been shown to be an important endocrine disrupter, contributing to the development of metabolic diseases such as obesity and diabetes mellitus, which themselves are risk factors for cardiovascular disease. While the epidemiological evidence for the deleterious effects of PM air pollution on health is increasingly accepted, newer studies are shedding light on the mechanisms by which PM exerts its toxic effects. A greater understanding of how PM exerts toxic effects on human health is required in order to prevent and minimize the deleterious health effects of this ubiquitous environmental hazard. Air pollution is a growing public health problem and mortality due to air pollution is expected to double by 2050. Here, we review the epidemiological evidence for the cardiovascular effects of PM exposure and discuss current understanding about the biological mechanisms, by which PM exerts toxic effects on cardiovascular system to induce cardiovascular disease
Loss of heme oxygenase 2 causes reduced expression of genes in cardiac muscle development and contractility and leads to cardiomyopathy in mice
Obstructive sleep apnea (OSA) is a common breathing disorder that affects a significant portion of the adult population. In addition to causing excessive daytime sleepiness and neurocognitive effects, OSA is an independent risk factor for cardiovascular disease; however, the underlying mechanisms are not completely understood. Using exposure to intermittent hypoxia (IH) to mimic OSA, we have recently reported that mice exposed to IH exhibit endothelial cell (EC) activation, which is an early process preceding the development of cardiovascular disease. Although widely used, IH models have several limitations such as the severity of hypoxia, which does not occur in most patients with OSA. Recent studies reported that mice with deletion of hemeoxygenase 2 (Hmox2-/-), which plays a key role in oxygen sensing in the carotid body, exhibit spontaneous apneas during sleep and elevated levels of catecholamines. Here, using RNA-sequencing we investigated the transcriptomic changes in aortic ECs and heart tissue to understand the changes that occur in Hmox2-/- mice. In addition, we evaluated cardiac structure, function, and electrical properties by using echocardiogram and electrocardiogram in these mice. We found that Hmox2-/- mice exhibited aortic EC activation. Transcriptomic analysis in aortic ECs showed differentially expressed genes enriched in blood coagulation, cell adhesion, cellular respiration and cardiac muscle development and contraction. Similarly, transcriptomic analysis in heart tissue showed a differentially expressed gene set enriched in mitochondrial translation, oxidative phosphorylation and cardiac muscle development. Analysis of transcriptomic data from aortic ECs and heart tissue showed loss of Hmox2 gene might have common cellular network footprints on aortic endothelial cells and heart tissue. Echocardiographic evaluation showed that Hmox2-/- mice develop progressive dilated cardiomyopathy and conduction abnormalities compared to Hmox2+/+ mice. In conclusion, we found that Hmox2-/- mice, which spontaneously develop apneas exhibit EC activation and transcriptomic and functional changes consistent with heart failure
Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice
<p>Abstract</p> <p>Background</p> <p>Exposure to particulate matter (PM) air pollution may be an important environmental factor leading to exacerbations of inflammatory illnesses in the GI tract. PM can gain access to the gastrointestinal (GI) tract via swallowing of air or secretions from the upper airways or mucociliary clearance of inhaled particles.</p> <p>Methods</p> <p>We measured PM-induced cell death and mitochondrial ROS generation in Caco-2 cells stably expressing oxidant sensitive GFP localized to mitochondria in the absence or presence of an antioxidant. C57BL/6 mice were exposed to a very high dose of urban PM from Washington, DC (200 μg/mouse) or saline via gastric gavage and small bowel and colonic tissue were harvested for histologic evaluation, and RNA isolation up to 48 hours. Permeability to 4kD dextran was measured at 48 hours.</p> <p>Results</p> <p>PM induced mitochondrial ROS generation and cell death in Caco-2 cells. PM also caused oxidant-dependent NF-κB activation, disruption of tight junctions and increased permeability of Caco-2 monolayers. Mice exposed to PM had increased intestinal permeability compared with PBS treated mice. In the small bowel, colocalization of the tight junction protein, ZO-1 was lower in the PM treated animals. In the small bowel and colon, PM exposed mice had higher levels of IL-6 mRNA and reduced levels of ZO-1 mRNA. Increased apoptosis was observed in the colon of PM exposed mice.</p> <p>Conclusions</p> <p>Exposure to high doses of urban PM causes oxidant dependent GI epithelial cell death, disruption of tight junction proteins, inflammation and increased permeability in the gut <it>in vitro </it>and <it>in vivo</it>. These PM-induced changes may contribute to exacerbations of inflammatory disorders of the gut.</p
Head CT is of limited diagnostic value in critically ill patients who remain unresponsive after discontinuation of sedation
<p>Abstract</p> <p>Background</p> <p>Prolonged sedation is common in mechanically ventilated patients and is associated with increased morbidity and mortality. We sought to determine the diagnostic value of head computed tomography (CT) in mechanically ventilated patients who remain unresponsive after discontinuation of sedation.</p> <p>Methods</p> <p>A retrospective review of adult (age >18 years of age) patients consecutively admitted to the medical intensive care unit of a tertiary care medical center. Patients requiring mechanical ventilation for management of respiratory failure for longer than 72 hours were included in the study group. A group that did not have difficulty with awakening was included as a control.</p> <p>Results</p> <p>The median time after sedation was discontinued until a head CT was performed was 2 days (interquartile range 1.375–2 days). Majority (80%) of patients underwent head CT evaluation within the first 48 hours after discontinuation of sedation. Head CT was non-diagnostic in all but one patient who had a small subarachnoid hemorrhage. Twenty-five patients (60%) had a normal head CT. Head CT findings did not alter the management of any of the patients. The control group was similar to the experimental group with respect to demographics, etiology of respiratory failure and type of sedation used. However, while 37% of subjects in the control group had daily interruption of sedation, only 19% in the patient group had daily interruption of sedation (p < 0.05).</p> <p>Conclusion</p> <p>In patients on mechanical ventilation for at least 72 hours and who remain unresponsive after sedative discontinuation and with a non-focal neurologic examination, head CT is performed early and is of very limited diagnostic utility. Routine use of daily interruption of sedation is used in a minority of patients outside of a clinical trial setting though it may decrease the frequency of unresponsiveness from prolonged sedation and the need for head CT in patients mechanically ventilated for a prolonged period.</p
Particulate Matter-Induced Lung Inflammation Increases Systemic Levels of PAI-1 and Activates Coagulation Through Distinct Mechanisms
Exposure of human populations to ambient particulate matter (PM) air pollution significantly contributes to the mortality attributable to ischemic cardiovascular events. We reported that mice treated with intratracheally instilled PM develop a prothrombotic state that requires the release of IL-6 by alveolar macrophages. We sought to determine whether exposure of mice to PM increases the levels of PAI-1, a major regulator of thrombolysis, via a similar or distinct mechanism. mice but was absent in mice treated with etanercept, a TNF-α inhibitor. Treatment with etanercept did not prevent the PM-induced tendency toward thrombus formation.Mice exposed to inhaled PM exhibited a TNF-α-dependent increase in PAI-1 and an IL-6-dependent activation of coagulation. These results suggest that multiple mechanisms link PM-induced lung inflammation with the development of a prothrombotic state
Nonclassical Ly6C(-) Monocytes Drive the Development of Inflammatory Arthritis in Mice
Different subsets and/or polarized phenotypes of monocytes and macrophages may play distinct roles during the development and resolution of inflammation. Here, we demonstrate in a murine model of rheumatoid arthritis that non-classical Ly6C(−) monocytes are required for the initiation and progression of sterile joint inflammation. Moreover, non-classical Ly6C(−) monocytes differentiate into inflammatory macrophages (M1), which drive disease pathogenesis and display plasticity during the resolution phase. During the development of arthritis, these cells polarize toward an alternatively activated phenotype (M2), promoting the resolution of joint inflammation. The influx of Ly6C(−) monocytes and their subsequent classical and then alternative activation occurs without changes in synovial tissue-resident macrophages, which express markers of M2 polarization throughout the course of the arthritis and attenuate joint inflammation during the initiation phase. These data suggest that circulating Ly6C(−) monocytes recruited to the joint upon injury orchestrate the development and resolution of autoimmune joint inflammation
Alveolar Epithelial β2-Adrenergic Receptors
β2-adrenergic receptors are present throughout the lung, including the alveolar airspace, where they play an important role for regulation of the active Na+ transport needed for clearance of excess fluid out of alveolar airspace. β2-adrenergic receptor signaling is required for up-regulation of alveolar epithelial active ion transport in the setting of excess alveolar edema. The positive, protective effects of β2-adrenergic receptor signaling on alveolar active Na+ transport in normal and injured lungs provide substantial support for the use of β-adrenergic agonists to accelerate alveolar fluid clearance in patients with cardiogenic and noncardiogenic pulmonary edema. In this review, we summarize the role of β2-adrenergic receptors in the alveolar epithelium with emphasis on their role in the regulation of alveolar active Na+ transport in normal and injured lungs
- …