22 research outputs found
Quasi-exact solvability beyond the SL(2) algebraization
We present evidence to suggest that the study of one dimensional
quasi-exactly solvable (QES) models in quantum mechanics should be extended
beyond the usual \sla(2) approach. The motivation is twofold: We first show
that certain quasi-exactly solvable potentials constructed with the \sla(2)
Lie algebraic method allow for a new larger portion of the spectrum to be
obtained algebraically. This is done via another algebraization in which the
algebraic hamiltonian cannot be expressed as a polynomial in the generators of
\sla(2). We then show an example of a new quasi-exactly solvable potential
which cannot be obtained within the Lie-algebraic approach.Comment: Submitted to the proceedings of the 2005 Dubna workshop on
superintegrabilit
A conjecture on Exceptional Orthogonal Polynomials
Exceptional orthogonal polynomial systems (X-OPS) arise as eigenfunctions of
Sturm-Liouville problems and generalize in this sense the classical families of
Hermite, Laguerre and Jacobi. They also generalize the family of CPRS
orthogonal polynomials. We formulate the following conjecture: every
exceptional orthogonal polynomial system is related to a classical system by a
Darboux-Crum transformation. We give a proof of this conjecture for codimension
2 exceptional orthogonal polynomials (X2-OPs). As a by-product of this
analysis, we prove a Bochner-type theorem classifying all possible X2-OPS. The
classification includes all cases known to date plus some new examples of
X2-Laguerre and X2-Jacobi polynomials
Exceptional orthogonal polynomials and the Darboux transformation
We adapt the notion of the Darboux transformation to the context of
polynomial Sturm-Liouville problems. As an application, we characterize the
recently described Laguerre polynomials in terms of an isospectral
Darboux transformation. We also show that the shape-invariance of these new
polynomial families is a direct consequence of the permutability property of
the Darboux-Crum transformation.Comment: corrected abstract, added references, minor correction
Quasi-Exact Solvability and the direct approach to invariant subspaces
We propose a more direct approach to constructing differential operators that
preserve polynomial subspaces than the one based on considering elements of the
enveloping algebra of sl(2). This approach is used here to construct new
exactly solvable and quasi-exactly solvable quantum Hamiltonians on the line
which are not Lie-algebraic. It is also applied to generate potentials with
multiple algebraic sectors. We discuss two illustrative examples of these two
applications: an interesting generalization of the Lam\'e potential which
posses four algebraic sectors, and a quasi-exactly solvable deformation of the
Morse potential which is not Lie-algebraic.Comment: 17 pages, 3 figure
Exceptional orthogonal polynomials and new exactly solvable potentials in quantum mechanics
In recent years, one of the most interesting developments in quantum
mechanics has been the construction of new exactly solvable potentials
connected with the appearance of families of exceptional orthogonal polynomials
(EOP) in mathematical physics. In contrast with families of (Jacobi, Laguerre
and Hermite) classical orthogonal polynomials, which start with a constant, the
EOP families begin with some polynomial of degree greater than or equal to one,
but still form complete, orthogonal sets with respect to some positive-definite
measure. We show how they may appear in the bound-state wavefunctions of some
rational extensions of well-known exactly solvable quantum potentials. Such
rational extensions are most easily constructed in the framework of
supersymmetric quantum mechanics (SUSYQM), where they give rise to a new class
of translationally shape invariant potentials. We review the most recent
results in this field, which use higher-order SUSYQM. We also comment on some
recent re-examinations of the shape invariance condition, which are independent
of the EOP construction problem.Comment: 21 pages, no figure; communication at the Symposium Symmetries in
Science XV, July 31-August 5, 2011, Bregenz, Austri
Multi-indexed (q-)Racah Polynomials
As the second stage of the project multi-indexed orthogonal polynomials, we
present, in the framework of `discrete quantum mechanics' with real shifts in
one dimension, the multi-indexed (q-)Racah polynomials. They are obtained from
the (q-)Racah polynomials by multiple application of the discrete analogue of
the Darboux transformations or the Crum-Krein-Adler deletion of `virtual state'
vectors, in a similar way to the multi-indexed Laguerre and Jacobi polynomials
reported earlier. The virtual state vectors are the `solutions' of the matrix
Schr\"odinger equation with negative `eigenvalues', except for one of the two
boundary points.Comment: 29 pages. The type II (q-)Racah polynomials are deleted because they
can be obtained from the type I polynomials. To appear in J.Phys.
Explicit solution of the (quantum) elliptic Calogero-Sutherland model
We derive explicit formulas for the eigenfunctions and eigenvalues of the
elliptic Calogero-Sutherland model as infinite series, to all orders and for
arbitrary particle numbers and coupling parameters. The eigenfunctions obtained
provide an elliptic deformation of the Jack polynomials. We prove in certain
special cases that these series have a finite radius of convergence in the nome
of the elliptic functions, including the two particle (= Lam\'e) case for
non-integer coupling parameters.Comment: v1: 17 pages. The solution is given as series in q but only to low
order. v2: 30 pages. Results significantly extended. v3: 35 pages. Paper
completely revised: the results of v1 and v2 are extended to all order
Extended Krein-Adler theorem for the translationally shape invariant potentials
Considering successive extensions of primary translationally shape invariant potentials, we enlarge the Krein-Adler theorem to mixed chains of state adding and state-deleting Darboux-Backlund transformations. It allows us to establish novel bi-linear Wronskian and determinantal identities for classical orthogonal polynomials