22 research outputs found

    Quasi-exact solvability beyond the SL(2) algebraization

    Full text link
    We present evidence to suggest that the study of one dimensional quasi-exactly solvable (QES) models in quantum mechanics should be extended beyond the usual \sla(2) approach. The motivation is twofold: We first show that certain quasi-exactly solvable potentials constructed with the \sla(2) Lie algebraic method allow for a new larger portion of the spectrum to be obtained algebraically. This is done via another algebraization in which the algebraic hamiltonian cannot be expressed as a polynomial in the generators of \sla(2). We then show an example of a new quasi-exactly solvable potential which cannot be obtained within the Lie-algebraic approach.Comment: Submitted to the proceedings of the 2005 Dubna workshop on superintegrabilit

    A conjecture on Exceptional Orthogonal Polynomials

    Get PDF
    Exceptional orthogonal polynomial systems (X-OPS) arise as eigenfunctions of Sturm-Liouville problems and generalize in this sense the classical families of Hermite, Laguerre and Jacobi. They also generalize the family of CPRS orthogonal polynomials. We formulate the following conjecture: every exceptional orthogonal polynomial system is related to a classical system by a Darboux-Crum transformation. We give a proof of this conjecture for codimension 2 exceptional orthogonal polynomials (X2-OPs). As a by-product of this analysis, we prove a Bochner-type theorem classifying all possible X2-OPS. The classification includes all cases known to date plus some new examples of X2-Laguerre and X2-Jacobi polynomials

    Exceptional orthogonal polynomials and the Darboux transformation

    Get PDF
    We adapt the notion of the Darboux transformation to the context of polynomial Sturm-Liouville problems. As an application, we characterize the recently described XmX_m Laguerre polynomials in terms of an isospectral Darboux transformation. We also show that the shape-invariance of these new polynomial families is a direct consequence of the permutability property of the Darboux-Crum transformation.Comment: corrected abstract, added references, minor correction

    Quasi-Exact Solvability and the direct approach to invariant subspaces

    Full text link
    We propose a more direct approach to constructing differential operators that preserve polynomial subspaces than the one based on considering elements of the enveloping algebra of sl(2). This approach is used here to construct new exactly solvable and quasi-exactly solvable quantum Hamiltonians on the line which are not Lie-algebraic. It is also applied to generate potentials with multiple algebraic sectors. We discuss two illustrative examples of these two applications: an interesting generalization of the Lam\'e potential which posses four algebraic sectors, and a quasi-exactly solvable deformation of the Morse potential which is not Lie-algebraic.Comment: 17 pages, 3 figure

    Exceptional orthogonal polynomials and new exactly solvable potentials in quantum mechanics

    Full text link
    In recent years, one of the most interesting developments in quantum mechanics has been the construction of new exactly solvable potentials connected with the appearance of families of exceptional orthogonal polynomials (EOP) in mathematical physics. In contrast with families of (Jacobi, Laguerre and Hermite) classical orthogonal polynomials, which start with a constant, the EOP families begin with some polynomial of degree greater than or equal to one, but still form complete, orthogonal sets with respect to some positive-definite measure. We show how they may appear in the bound-state wavefunctions of some rational extensions of well-known exactly solvable quantum potentials. Such rational extensions are most easily constructed in the framework of supersymmetric quantum mechanics (SUSYQM), where they give rise to a new class of translationally shape invariant potentials. We review the most recent results in this field, which use higher-order SUSYQM. We also comment on some recent re-examinations of the shape invariance condition, which are independent of the EOP construction problem.Comment: 21 pages, no figure; communication at the Symposium Symmetries in Science XV, July 31-August 5, 2011, Bregenz, Austri

    Multi-indexed (q-)Racah Polynomials

    Get PDF
    As the second stage of the project multi-indexed orthogonal polynomials, we present, in the framework of `discrete quantum mechanics' with real shifts in one dimension, the multi-indexed (q-)Racah polynomials. They are obtained from the (q-)Racah polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of `virtual state' vectors, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the `solutions' of the matrix Schr\"odinger equation with negative `eigenvalues', except for one of the two boundary points.Comment: 29 pages. The type II (q-)Racah polynomials are deleted because they can be obtained from the type I polynomials. To appear in J.Phys.

    Explicit solution of the (quantum) elliptic Calogero-Sutherland model

    Full text link
    We derive explicit formulas for the eigenfunctions and eigenvalues of the elliptic Calogero-Sutherland model as infinite series, to all orders and for arbitrary particle numbers and coupling parameters. The eigenfunctions obtained provide an elliptic deformation of the Jack polynomials. We prove in certain special cases that these series have a finite radius of convergence in the nome qq of the elliptic functions, including the two particle (= Lam\'e) case for non-integer coupling parameters.Comment: v1: 17 pages. The solution is given as series in q but only to low order. v2: 30 pages. Results significantly extended. v3: 35 pages. Paper completely revised: the results of v1 and v2 are extended to all order

    Extended Krein-Adler theorem for the translationally shape invariant potentials

    Get PDF
    Considering successive extensions of primary translationally shape invariant potentials, we enlarge the Krein-Adler theorem to mixed chains of state adding and state-deleting Darboux-Backlund transformations. It allows us to establish novel bi-linear Wronskian and determinantal identities for classical orthogonal polynomials
    corecore