9 research outputs found

    Two novel classes of solvable many-body problems of goldfish type with constraints

    Get PDF
    Two novel classes of many-body models with nonlinear interactions "of goldfish type" are introduced. They are solvable provided the initial data satisfy a single constraint (in one case; in the other, two constraints): i. e., for such initial data the solution of their initial-value problem can be achieved via algebraic operations, such as finding the eigenvalues of given matrices or equivalently the zeros of known polynomials. Entirely isochronous versions of some of these models are also exhibited: i.e., versions of these models whose nonsingular solutions are all completely periodic with the same period.Comment: 30 pages, 2 figure

    Exceptional orthogonal polynomials and the Darboux transformation

    Get PDF
    We adapt the notion of the Darboux transformation to the context of polynomial Sturm-Liouville problems. As an application, we characterize the recently described XmX_m Laguerre polynomials in terms of an isospectral Darboux transformation. We also show that the shape-invariance of these new polynomial families is a direct consequence of the permutability property of the Darboux-Crum transformation.Comment: corrected abstract, added references, minor correction

    Quasi-exact solvability beyond the SL(2) algebraization

    Full text link
    We present evidence to suggest that the study of one dimensional quasi-exactly solvable (QES) models in quantum mechanics should be extended beyond the usual \sla(2) approach. The motivation is twofold: We first show that certain quasi-exactly solvable potentials constructed with the \sla(2) Lie algebraic method allow for a new larger portion of the spectrum to be obtained algebraically. This is done via another algebraization in which the algebraic hamiltonian cannot be expressed as a polynomial in the generators of \sla(2). We then show an example of a new quasi-exactly solvable potential which cannot be obtained within the Lie-algebraic approach.Comment: Submitted to the proceedings of the 2005 Dubna workshop on superintegrabilit

    A conjecture on Exceptional Orthogonal Polynomials

    Get PDF
    Exceptional orthogonal polynomial systems (X-OPS) arise as eigenfunctions of Sturm-Liouville problems and generalize in this sense the classical families of Hermite, Laguerre and Jacobi. They also generalize the family of CPRS orthogonal polynomials. We formulate the following conjecture: every exceptional orthogonal polynomial system is related to a classical system by a Darboux-Crum transformation. We give a proof of this conjecture for codimension 2 exceptional orthogonal polynomials (X2-OPs). As a by-product of this analysis, we prove a Bochner-type theorem classifying all possible X2-OPS. The classification includes all cases known to date plus some new examples of X2-Laguerre and X2-Jacobi polynomials

    Quasi-Exact Solvability and the direct approach to invariant subspaces

    Full text link
    We propose a more direct approach to constructing differential operators that preserve polynomial subspaces than the one based on considering elements of the enveloping algebra of sl(2). This approach is used here to construct new exactly solvable and quasi-exactly solvable quantum Hamiltonians on the line which are not Lie-algebraic. It is also applied to generate potentials with multiple algebraic sectors. We discuss two illustrative examples of these two applications: an interesting generalization of the Lam\'e potential which posses four algebraic sectors, and a quasi-exactly solvable deformation of the Morse potential which is not Lie-algebraic.Comment: 17 pages, 3 figure

    Exceptional Askey-Wilson type polynomials through Darboux-Crum transformations

    Get PDF
    An alternative derivation is presented of the infinitely many exceptional Wilson and Askey-Wilson polynomials, which were introduced by the present authors in 2009. Darboux-Crum transformations intertwining the discrete quantum mechanical systems of the original and the exceptional polynomials play an important role. Infinitely many continuous Hahn polynomials are derived in the same manner. The present method provides a simple proof of the shape invariance of these systems as in the corresponding cases of the exceptional Laguerre and Jacobi polynomials.Comment: 24 pages. Comments and references added. To appear in J.Phys.

    Two-step rational extensions of the harmonic oscillator: exceptional orthogonal polynomials and ladder operators

    No full text
    The type III Hermite X exceptional orthogonal polynomial family is generalized to a double-indexed one (with m even and m odd such that m > m) and the corresponding rational extensions of the harmonic oscillator are constructed by using second-order supersymmetric quantum mechanics. The new polynomials are proved to be expressible in terms of mixed products of Hermite and pseudo-Hermite ones, while some of the associated potentials are linked with rational solutions of the Painlevé IV equation. A novel set of ladder operators for the extended oscillators is also built and shown to satisfy a polynomial Heisenberg algebra of order m - m + 1, which may alternatively be interpreted in terms of a special type of (m - m + 2)th-order shape invariance property
    corecore