8 research outputs found

    Ciclogénesis explosivas en el sector Euro-Atlántico: estudio de su dinámica a gran escala y variabilidad

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física de la Tierra, Astronomía y Astrofísica I (Geofísica y Meteorología) (Astronomía y Geodesia), leída el 27-11-2015.Depto. de Física de la Tierra y AstrofísicaFac. de Ciencias FísicasTRUEunpu

    A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal

    Get PDF
    The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability

    Reconstruction of erosivity density in northwest Italy since 1701

    No full text
    Societies can be better prepared to face hydrological extremes (e.g. flash floods) by understanding the trends and variability of rainfall aggressiveness and its derivative, erosivity density (ED). Estimating extended time series of ED is, however, scientifically challenging because of the paucity of long-term high-resolution pluviometric observations. This research presents the longest ED time series reconstruction (1701–2019) in northwest Italy (Piedmont region) to date, which is analysed to identify damaging hydrological periods. With this aim, we developed a model consistent with a sample (1981–2015) of detailed novel Revised Universal Soil Loss Erosion-based high-resolution data and documentary hydrological extreme records. The modelled data show a noticeable rising trend in ED from 1897 onwards, together with an increase of extreme values for return periods of 10 and 50 years, consistent with the Clausius‐Clapeyron scaling of extreme rainfall. We also suggest the North Atlantic Oscillation and Atlantic Multidecadal Oscillation may be associated with rainfall extremes in Piedmont

    Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

    Get PDF
    Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe

    Meteolab as an educational tool for Meteorology in the Classroom

    No full text
    El Presente proyecto es una continuación de proyectos anteriores dentro de la plataforma de divulgación Meteolab. Meteolab es un proyecto de divulgación de Meteorología y Clima que tiene su origen en 2002, cuando se comenzaron a diseñar experimentos de bajo coste con materiales caseros para la Semana de la Ciencia de la Comunidad de Madrid (CAM). Con los años, se generó un conocimiento que se materializó en 2010 con la concesión de un Proyecto de Innovación Educativa (PIE) financiado por la Universidad Complutense de Madrid (UCM), dirigido por Belén Rodríguez de Fonseca. Gracias a este primer proyecto en el que trabajaron muchos profesores y alumnos de ciencias de la atmósfera, se gestó un portal web (meteolab.fis.ucm.es) en el que los experimentos se explicaban y se grababan para impulsar su difusión. Más adelante, en un segundo proyecto de Innovación Educativa, dirigido por la profesora Maria Luisa Montoya, los contenidos fueron traducidos al inglés. En concreto, los experimentos que componen Meteolab tienen como principal objetivo entender los principios y variables que determinan el comportamiento de las masas de aire en la atmósfera y de agua en el océano. La idea consiste en visualizar con experimentos sencillos las leyes físicas que gobiernan la atmósfera y el océano: movimientos horizontales y verticales, cambios de estado, mezcla y equilibrio, así como la interacción entre componentes. Se persigue observar los procesos meteorológicos familiares, como son la formación de una nube, los tornados, la convección, la formación de borrascas o la lluvia, entendiendo los procesos físicos que los producen. Finalmente, Meteolab permite también visualizar fenómenos climáticos como el efecto invernadero, el fenómeno de El Niño, el deshielo del Ártico, la influencia de los volcanes en el clima o la subida del nivel del mar. Existe un catálogo de experimentos, la mayoría de los cuales pueden consultarse a través del portal meteolab.fis.ucm.es, encontrándose todos ellos físicamente localizados en el Laboratorio Elvira Zurita de la Facultad de Ciencias Físicas. Tras la experiencia acumulada durante los 18 años de existencia de Meteolab, en los que se han adecuado las explicaciones de los experimentos a distintos niveles de dificultad (infantil, primaria, secundaria, bachillerato y Universidad de mayores), se ha sugerido la idoneidad de adaptar los contenidos a los estudiantes del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Así, por ejemplo, cuando se explica la formación de una nube, se puede ir complicando el discurso dependiendo de los diferentes ciclos de la enseñanza. De esta manera, para un nivel de escuela primaria uno sólo tiene que explicar que el aire se enfría al ascender, y al enfriarse se forman gotas de agua que forman las nubes. Al llegar a secundaria, los estudiantes aprenden el concepto de presión atmosférica y la relación entre la temperatura, la presión y el volumen de una parcela de aire. Más adelante, en el Grado en Física, se estudia la tensión de vapor, la expansión adiabática y la existencia de núcleos de condensación. Finalmente, en el Máster en Meteorología se aprenden los distintos procesos de nucleación y tipos de nubes. Todos estos conceptos van complicando la explicación, por lo que un mismo experimento puede explicarse tanto en una escuela infantil como en una Universidad. Es por ello, que, aprovechando la plataforma de divulgación Meteolab, hemos decidido dar un paso adelante y adaptar y ampliar los contenidos de Meteolab, para así poder integrarlos en los currícula del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Con todo ello, los objetivos del presente proyecto han sido: -Implementar los experimentos de Meteolab en el Aula, tanto en las asignaturas de Grado como en las de Máster. -Adaptar los contenidos existentes del portal web Meteolab (meteolab.fis.ucm.es) a las asignaturas relacionadas con Meteorología del Grado en Física y del Máster en Meteorología y Geofísica, con el fin de visualizar procesos físicos que se explican en el aula. -Añadir a Meteolab nuevos contenidos en relación con la dinámica de la atmósfera y el cambio climático. -Evaluar la mejora de la comprensión por parte del alumnado de los procesos que tienen lugar principalmente en la atmósfera y el océano, y su relación con el clima y su variabilidad.This project is a continuation of previous projects within the Meteolab outreach platform. Meteolab is a Meteorology and Climate outreach project that has its origins in 2002, when low-cost experiments with homemade materials were designed for the Science Week of the Community of Madrid (CAM). Over the years, knowledge was generated and materialized in 2010 with the award of an Educational Innovation Project (PIE) funded by the Complutense University of Madrid (UCM), directed by Belén Rodríguez de Fonseca. Thanks to this first project, in which many teachers and students of atmospheric sciences worked, a web portal was created (meteolab.fis.ucm.es) in which the experiments were explained and recorded to promote their dissemination. Later, in a second Educational Innovation project, directed by Professor Maria Luisa Montoya, the contents were translated into English. Specifically, the main objective of the experiments that make up Meteolab is to understand the principles and variables that determine the behavior of air masses in the atmosphere and water masses in the ocean. The idea is to visualize with simple experiments the physical laws that govern the atmosphere and the ocean: horizontal and vertical movements, state changes, mixing and equilibrium, as well as the interaction between components. The aim is to observe meteorological processes, such as cloud formation, tornadoes, convection, squall formation or rain, understanding the physical processes that produce them. Finally, Meteolab also allows to visualize climatic phenomena such as the greenhouse effect, the El Niño phenomenon, the melting of the Arctic ice, the influence of volcanoes on the climate or the rise in sea level. There is a catalog of experiments, most of which can be consulted through the portal meteolab.fis.ucm.es, all of which are physically located in the Elvira Zurita Laboratory of the Faculty of Physical Sciences. After the experience accumulated during the 18 years of existence of Meteolab, in which the explanations of the experiments have been adapted to different levels of difficulty ( primary, secondary, high school and senior university), it has been suggested the suitability of adapting the contents to the students of the Degree in Physics and the Master in Meteorology and Geophysics of the UCM. Thus, for example, when explaining the formation of a cloud, the discourse can be complicated depending on the different teaching cycles. Thus, for an elementary school level, one only has to explain that the air cools as it rises, and as it cools, water droplets form and form clouds. By high school, students learn the concept of atmospheric pressure and the relationship between temperature, pressure and volume of a parcel of air. Later, in the Bachelor's Degree in Physics, vapor tension, adiabatic expansion and the existence of condensation nuclei are studied. Finally, in the Master's Degree in Meteorology, the different processes of nucleation and types of clouds are learned. All these concepts complicate the explanation, so that the same experiment can be explained both in a kindergarten and in a university. That is why, taking advantage of the Meteolab dissemination platform, we have decided to take a step forward and adapt and expand the contents of Meteolab, in order to integrate them into the curricula of the Degree in Physics and the Master in Meteorology and Geophysics of the UCM. With all this, the objectives of the present project have been: -Implement Meteolab experiments in the classroom, both in undergraduate and master's degree courses. -To adapt the existing contents of the Meteolab web portal (meteolab.fis.ucm.es) to the subjects related to Meteorology of the Degree in Physics and the Master in Meteorology and Geophysics, in order to visualize physical processes that are explained in the classroom. -Add to Meteolab new contents related to atmospheric dynamics and climate change. -To evaluate the improvement of the students' understanding of the processes that take place mainly in the atmosphere and the ocean, and their relationship with climate and its variability.Depto. de Física de la Tierra y AstrofísicaFac. de Ciencias FísicasFALSEsubmitte
    corecore