2,260 research outputs found

    Quantum Geons and Noncommutative Spacetimes

    Get PDF
    Physical considerations strongly indicate that spacetime at Planck scales is noncommutative. A popular model for such a spacetime is the Moyal plane. The Poincar\`e group algebra acts on it with a Drinfel'd-twisted coproduct. But the latter is not appropriate for more complicated spacetimes such as those containing the Friedman-Sorkin (topological) geons. They have rich diffeomorphism groups and in particular mapping class groups, so that the statistics groups for N identical geons is strikingly different from the permutation group SNS_N. We generalise the Drinfel'd twist to (essentially) generic groups including to finite and discrete ones and use it to modify the commutative spacetime algebras of geons as well to noncommutative algebras. The latter support twisted actions of diffeos of geon spacetimes and associated twisted statistics. The notion of covariant fields for geons is formulated and their twisted versions are constructed from their untwisted versions. Non-associative spacetime algebras arise naturally in our analysis. Physical consequences, such as the violation of Pauli principle, seem to be the outcomes of such nonassociativity. The richness of the statistics groups of identical geons comes from the nontrivial fundamental groups of their spatial slices. As discussed long ago, extended objects like rings and D-branes also have similar rich fundamental groups. This work is recalled and its relevance to the present quantum geon context is pointed out.Comment: 41 page

    Covariant Quantum Fields on Noncommutative Spacetimes

    Get PDF
    A spinless covariant field ϕ\phi on Minkowski spacetime \M^{d+1} obeys the relation U(a,Λ)ϕ(x)U(a,Λ)1=ϕ(Λx+a)U(a,\Lambda)\phi(x)U(a,\Lambda)^{-1}=\phi(\Lambda x+a) where (a,Λ)(a,\Lambda) is an element of the Poincar\'e group \Pg and U:(a,Λ)U(a,Λ)U:(a,\Lambda)\to U(a,\Lambda) is its unitary representation on quantum vector states. It expresses the fact that Poincar\'e transformations are being unitary implemented. It has a classical analogy where field covariance shows that Poincar\'e transformations are canonically implemented. Covariance is self-reproducing: products of covariant fields are covariant. We recall these properties and use them to formulate the notion of covariant quantum fields on noncommutative spacetimes. In this way all our earlier results on dressing, statistics, etc. for Moyal spacetimes are derived transparently. For the Voros algebra, covariance and the *-operation are in conflict so that there are no covariant Voros fields compatible with *, a result we found earlier. The notion of Drinfel'd twist underlying much of the preceding discussion is extended to discrete abelian and nonabelian groups such as the mapping class groups of topological geons. For twists involving nonabelian groups the emergent spacetimes are nonassociative.Comment: 20 page

    Quantum Fields on the Groenewold-Moyal Plane: C, P, T and CPT

    Full text link
    We show that despite the inherent non-locality of quantum field theories on the Groenewold-Moyal (GM) plane, one can find a class of C{\bf C}, P{\bf P}, T{\bf T} and CPT{\bf CPT} invariant theories. In particular, these are theories without gauge fields or with just gauge fields and no matter fields. We also show that in the presence of gauge fields, one can have a field theory where the Hamiltonian is C{\bf C} and T{\bf T} invariant while the SS-matrix violates P{\bf P} and CPT{\bf CPT}. In non-abelian gauge theories with matter fields such as the electro-weak and QCDQCD sectors of the standard model of particle physics, C{\bf C}, P{\bf P}, T{\bf T} and the product of any pair of them are broken while CPT{\bf CPT} remains intact for the case θ0i=0\theta^{0i} =0. (Here xμxνxνxμ=iθμνx^{\mu} \star x^{\nu} - x^{\nu} \star x^{\mu} = i \theta^{\mu \nu}, xμx^{\mu}: coordinate functions, θμν=θνμ=\theta^{\mu \nu} = -\theta^{\nu \mu}= constant.) When θ0i0\theta^{0i} \neq 0, it contributes to breaking also P{\bf P} and CPT{\bf CPT}. It is known that the SS-matrix in a non-abelian theory depends on θμν\theta^{\mu \nu} only through θ0i\theta^{0i}. The SS-matrix is frame dependent. It breaks (the identity component of the) Lorentz group. All the noncommutative effects vanish if the scattering takes place in the center-of-mass frame, or any frame where θ0iPiin=0\theta^{0i}P^{\textrm{in}}_{i} = 0, but not otherwise. P{\bf P} and CPT{\bf CPT} are good symmetries of the theory in this special case.Comment: 18 pages, 1 figure, revised, 2 references adde

    Discrete Time Evolution and Energy Nonconservation in Noncommutative Physics

    Get PDF
    Time-space noncommutativity leads to quantisation of time and energy nonconservation when time is conjugate to a compact spatial direction like a circle. In this context energy is conserved only modulo some fixed unit. Such a possibility arises for example in theories with a compact extra dimension with which time does not commute. The above results suggest striking phenomenological consequences in extra dimensional theories and elsewhere. In this paper we develop scattering theory for discrete time translations. It enables the calculation of transition probabilities for energy nonconserving processes and has a central role both in formal theory and phenomenology. We can also consider space-space noncommutativity where one of the spatial directions is a circle. That leads to the quantisation of the remaining spatial direction and conservation of momentum in that direction only modulo some fixed unit, as a simple adaptation of the results in this paper shows.Comment: 17 pages, LaTex; minor correction

    Fuzzy Nambu-Goldstone Physics

    Get PDF
    In spacetime dimensions larger than 2, whenever a global symmetry G is spontaneously broken to a subgroup H, and G and H are Lie groups, there are Nambu-Goldstone modes described by fields with values in G/H. In two-dimensional spacetimes as well, models where fields take values in G/H are of considerable interest even though in that case there is no spontaneous breaking of continuous symmetries. We consider such models when the world sheet is a two-sphere and describe their fuzzy analogues for G=SU(N+1), H=S(U(N-1)xU(1)) ~ U(N) and G/H=CP^N. More generally our methods give fuzzy versions of continuum models on S^2 when the target spaces are Grassmannians and flag manifolds described by (N+1)x(N+1) projectors of rank =< (N+1)/2. These fuzzy models are finite-dimensional matrix models which nevertheless retain all the essential continuum topological features like solitonic sectors. They seem well-suited for numerical work.Comment: Latex, 18 pages; references added, typos correcte

    Dirac operator on the q-deformed Fuzzy sphere and Its spectrum

    Full text link
    The q-deformed fuzzy sphere SqF2(N)S_{qF}^2(N) is the algebra of (N+1)×(N+1)(N+1)\times(N+1) dim. matrices, covariant with respect to the adjoint action of \uq and in the limit q1q\to 1, it reduces to the fuzzy sphere SF2(N)S_{F}^2(N). We construct the Dirac operator on the q-deformed fuzzy sphere-SqF2(N)S_{qF}^{2}(N) using the spinor modules of \uq. We explicitly obtain the zero modes and also calculate the spectrum for this Dirac operator. Using this Dirac operator, we construct the \uq invariant action for the spinor fields on SqF2(N)S_{qF}^{2}(N) which are regularised and have only finite modes. We analyse the spectrum for both qq being root of unity and real, showing interesting features like its novel degeneracy. We also study various limits of the parameter space (q, N) and recover the known spectrum in both fuzzy and commutative sphere.Comment: 19 pages, 6 figures, more references adde

    Quantum Spacetimes in the Year 1

    Get PDF
    We review certain emergent notions on the nature of spacetime from noncommutative geometry and their radical implications. These ideas of spacetime are suggested from developments in fuzzy physics, string theory, and deformation quantisation. The review focuses on the ideas coming from fuzzy physics. We find models of quantum spacetime like fuzzy S4S^4 on which states cannot be localised, but which fluctuate into other manifolds like CP3 CP^3 . New uncertainty principles concerning such lack of localisability on quantum spacetimes are formulated.Such investigations show the possibility of formulating and answering questions like the probabilty of finding a point of a quantum manifold in a state localised on another one. Additional striking possibilities indicated by these developments is the (generic) failure of CPTCPT theorem and the conventional spin-statistics connection. They even suggest that Planck's `` constant '' may not be a constant, but an operator which does not commute with all observables. All these novel possibilities arise within the rules of conventional quantum physics,and with no serious input from gravity physics.Comment: 11 pages, LaTeX; talks given at Utica and Kolkata .Minor corrections made and references adde
    corecore