27,491 research outputs found
Quasifission and difference in formation of evaporation residues in the O+W and F+Ta reactions
The excitation functions of capture, complete fusion, and evaporation residue
formation in the O+W and F+Ta reactions leading
to the same Pb compound nucleus has been studied theoretically to
explain the experimental data showing more intense yield of evaporation residue
in the former reaction in comparison with that in the latter reaction. The
observed difference is explained by large capture cross section in the former
and by increase of the quasifission contribution to the yield of fission-like
fragments in the F+Ta reaction at large excitation energies. The
probability of compound nucleus formation in the O+W reaction is
larger but compound nuclei formed in both reactions have similar angular
momentum ranges at the same excitation energy. The observed decrease of
evaporation residue cross section normalized to the fusion cross section in the
F+Ta reaction in comparison with the one in the
O+W reaction at high excitation energies is explained by the
increase of hindrance in the formation of compound nucleus connected with more
quick increase of the quasifission contribution in the F induced
reaction. The spin distributions of the evaporation residue cross sections for
the two reactions are also presented.Comment: 11 pages, 5 figure
Nonsymmetric Interactions Trigger Collective Swings in Globally Ordered Systems
Many systems in nature, from ferromagnets to flocks of birds, exhibit ordering phenomena on the large scale. In condensed matter systems, order is statistically robust for large enough dimensions, with relative fluctuations due to noise vanishing with system size. Several biological systems, however, are less stable and spontaneously change their global state on relatively short time scales. Here we show that there are two crucial ingredients in these systems that enhance the effect of noise, leading to collective changes of state on finite time scales and off-equilibrium behavior: the nonsymmetric nature of interactions between individuals, and the presence of local heterogeneities in the topology of the network. Our results might explain what is observed in several living systems and are consistent with recent experimental data on bird flocks and other animal groups
On the stationary points of the TAP free energy
In the context of the p-spin spherical model, we introduce a method for the
computation of the number of stationary points of any nature (minima, saddles,
etc.) of the TAP free energy. In doing this we clarify the ambiguities related
to the approximations usually adopted in the standard calculations of the
number of states in mean field spin glass models.Comment: 11 pages, 1 Postscript figure, plain Te
Role of the target orientation angle and orbital angular momentum in the evaporation residue production
The influence of the orientation angles of the target nucleus symmetry axis
relative to the beam direction on the production of the evaporation residues is
investigated for the Ca+Sm reaction as a function of the beam
energy. At low energies (137 MeV), the yield of evaporation
residues is observed only for collisions with small orientation angles
().
At large energies (about 140--180 MeV) all the orientation
angles can contribute to the evaporation residue cross section
in the 10--100 mb range, and at 180 MeV
ranges around 0.1--10 mb because the fission barrier for a compound nucleus
decreases by increasing its excitation energy and angular momentum.Comment: 20 pages, 10 figures, submitted to JPS
Quasifission and fusion-fission in massive nuclei reactions. Comparison of reactions leading to the Z=120 element
The yields of evaporation residues, fusion-fission and quasifission fragments
in the Ca+Sm and O+W reactions are analyzed
in the framework of the combined theoretical method based on the dinuclear
system concept and advanced statistical model. The measured yields of
evaporation residues for the Ca+Sm reaction can be well
reproduced. The measured yields of fission fragments are decomposed into
contributions coming from fusion-fission, quasifission, and fast-fission. The
decrease in the measured yield of quasifission fragments in
Ca+Sm at the large collision energies and the lack of
quasifission fragments in the Ca+Sm reaction are explained by
the overlap in mass-angle distributions of the quasifission and fusion-fission
fragments. The investigation of the optimal conditions for the synthesis of the
new element =120 (=302) show that the Cr+Cm reaction is
preferable in comparison with the Fe+Pu and Ni+U
reactions because the excitation function of the evaporation residues of the
former reaction is some orders of magnitude larger than that for the last two
reactions.Comment: 27 pages, 12 figures, submitted to Phys. Rev.
Role of saddles in mean-field dynamics above the glass transition
Recent numerical developments in the study of glassy systems have shown that
it is possible to give a purely geometric interpretation of the dynamic glass
transition by considering the properties of unstable saddle points of the
energy. Here we further develop this program in the context of a mean-field
model, by analytically studying the properties of the closest saddle point to
an equilibrium configuration of the system. We prove that when the glass
transition is approached the energy of the closest saddle goes to the threshold
energy, defined as the energy level below which the degree of instability of
the typical stationary points vanishes. Moreover, we show that the distance
between a typical equilibrium configuration and the closest saddle is always
very small and that, surprisingly, it is almost independent of the temperature
Dynamical maximum entropy approach to flocking
Peer reviewedPublisher PD
- …