18 research outputs found

    Statistical distribution of quantum entanglement for a random bipartite state

    Full text link
    We compute analytically the statistics of the Renyi and von Neumann entropies (standard measures of entanglement), for a random pure state in a large bipartite quantum system. The full probability distribution is computed by first mapping the problem to a random matrix model and then using a Coulomb gas method. We identify three different regimes in the entropy distribution, which correspond to two phase transitions in the associated Coulomb gas. The two critical points correspond to sudden changes in the shape of the Coulomb charge density: the appearance of an integrable singularity at the origin for the first critical point, and the detachement of the rightmost charge (largest eigenvalue) from the sea of the other charges at the second critical point. Analytical results are verified by Monte Carlo numerical simulations. A short account of some of these results appeared recently in Phys. Rev. Lett. {\bf 104}, 110501 (2010).Comment: 7 figure

    Random Convex Hulls and Extreme Value Statistics

    Full text link
    In this paper we study the statistical properties of convex hulls of NN random points in a plane chosen according to a given distribution. The points may be chosen independently or they may be correlated. After a non-exhaustive survey of the somewhat sporadic literature and diverse methods used in the random convex hull problem, we present a unifying approach, based on the notion of support function of a closed curve and the associated Cauchy's formulae, that allows us to compute exactly the mean perimeter and the mean area enclosed by the convex polygon both in case of independent as well as correlated points. Our method demonstrates a beautiful link between the random convex hull problem and the subject of extreme value statistics. As an example of correlated points, we study here in detail the case when the points represent the vertices of nn independent random walks. In the continuum time limit this reduces to nn independent planar Brownian trajectories for which we compute exactly, for all nn, the mean perimeter and the mean area of their global convex hull. Our results have relevant applications in ecology in estimating the home range of a herd of animals. Some of these results were announced recently in a short communication [Phys. Rev. Lett. {\bf 103}, 140602 (2009)].Comment: 61 pages (pedagogical review); invited contribution to the special issue of J. Stat. Phys. celebrating the 50 years of Yeshiba/Rutgers meeting

    Metal-insulator transition in two-dimensional disordered systems with power-law transfer terms

    Full text link
    We investigate a disordered two-dimensional lattice model for noninteracting electrons with long-range power-law transfer terms and apply the method of level statistics for the calculation of the critical properties. The eigenvalues used are obtained numerically by direct diagonalization. We find a metal-insulator transition for a system with orthogonal symmetry. The exponent governing the divergence of the correlation length at the transition is extracted from a finite size scaling analysis and found to be ν=2.6±0.15\nu=2.6\pm 0.15. The critical eigenstates are also analyzed and the distribution of the generalized multifractal dimensions is extrapolated.Comment: 4 pages with 4 figures, printed version: PRB, Rapid Communication

    Statistical properties of power-law random banded unitary matrices in the delocalization-localization transition regime

    Full text link
    Power-law random banded unitary matrices (PRBUM), whose matrix elements decay in a power-law fashion, were recently proposed to model the critical statistics of the Floquet eigenstates of periodically driven quantum systems. In this work, we numerically study in detail the statistical properties of PRBUM ensembles in the delocalization-localization transition regime. In particular, implications of the delocalization-localization transition for the fractal dimension of the eigenvectors, for the distribution function of the eigenvector components, and for the nearest neighbor spacing statistics of the eigenphases are examined. On the one hand, our results further indicate that a PRBUM ensemble can serve as a unitary analog of the power-law random Hermitian matrix model for Anderson transition. On the other hand, some statistical features unseen before are found from PRBUM. For example, the dependence of the fractal dimension of the eigenvectors of PRBUM upon one ensemble parameter displays features that are quite different from that for the power-law random Hermitian matrix model. Furthermore, in the time-reversal symmetric case the nearest neighbor spacing distribution of PRBUM eigenphases is found to obey a semi-Poisson distribution for a broad range, but display an anomalous level repulsion in the absence of time-reversal symmetry.Comment: 10 pages + 13 fig

    Localization of eigenvectors in random graphs

    No full text
    Using exact numerical diagonalization, we investigate localization in two classes of random matrices corresponding to random graphs. The first class comprises the adjacency matrices of Erdős-Rényi (ER) random graphs. The second one corresponds to random cubic graphs, with Gaussian random variables on the diagonal. We establish the position of the mobility edge, applying the finite-size analysis of the inverse participation ratio. The fraction of localized states is rather small on the ER graphs and decreases when the average degree increases. On the contrary, on cubic graphs the fraction of localized states is large and tends to 1 when the strength of the disorder increases, implying that for sufficiently strong disorder all states are localized. The distribution of the inverse participation ratio in localized phase has finite width when the system size tends to infinity and exhibits complicated multi-peak structure. We also confirm that the statistics of level spacings is Poissonian in the localized regime, while for extended states it corresponds to the Gaussian orthogonal ensemble
    corecore