311 research outputs found

    Correlation functions of impedance and scattering matrix elements in chaotic absorbing cavities

    Get PDF
    Wave scattering in chaotic systems with a uniform energy loss (absorption) is considered. Within the random matrix approach we calculate exactly the energy correlation functions of different matrix elements of impedance or scattering matrices for systems with preserved or broken time-reversal symmetry. The obtained results are valid at any number of arbitrary open scattering channels and arbitrary absorption. Elastic enhancement factors (defined through the ratio of the corresponding variance in reflection to that in transmission) are also discussed.Comment: 10 pages, 2 figures (misprints corrected and references updated in ver.2); to appear in Acta Phys. Pol. A (Proceedings of the 2nd Workshop on Quantum Chaos and Localization Phenomena, May 19-22, 2005, Warsaw

    Statistical Properties of Random Banded Matrices with Strongly Fluctuating Diagonal Elements

    Full text link
    The random banded matrices (RBM) whose diagonal elements fluctuate much stronger than the off-diagonal ones were introduced recently by Shepelyansky as a convenient model for coherent propagation of two interacting particles in a random potential. We treat the problem analytically by using the mapping onto the same supersymmetric nonlinear σ−\sigma-model that appeared earlier in consideration of the standard RBM ensemble, but with renormalized parameters. A Lorentzian form of the local density of states and a two-scale spatial structure of the eigenfunctions revealed recently by Jacquod and Shepelyansky are confirmed by direct calculation of the distribution of eigenfunction components.Comment: 7 pages,RevTex, no figures Submitted to Phys.Rev.

    Distribution of "level velocities" in quasi 1D disordered or chaotic systems with localization

    Full text link
    The explicit analytical expression for the distribution function of parametric derivatives of energy levels ("level velocities") with respect to a random change of scattering potential is derived for the chaotic quantum systems belonging to the quasi 1D universality class (quantum kicked rotator, "domino" billiard, disordered wire, etc.).Comment: 11 pages, REVTEX 3.

    Inhomogeneous losses and complexness of wave functions in chaotic cavities

    Get PDF
    In a two-dimensional microwave chaotic cavity Ohmic losses located at the contour of the cavity result in different broadenings of different modes. We provide an analytic description and establish the link between such an inhomogeneous damping and the complex (non-real) character of biorthogonal wave functions. This substantiates the corresponding recent experimental findings of Barthélemy et al. (Europhys. Lett., 70 (2005) 162)

    Induced vs Spontaneous Breakdown of S-matrix Unitarity: Probability of No Return in Quantum Chaotic and Disordered Systems

    Full text link
    We investigate systematically sample-to sample fluctuations of the probability Ï„\tau of no return into a given entrance channel for wave scattering from disordered systems. For zero-dimensional ("quantum chaotic") and quasi one-dimensional systems with broken time-reversal invariance we derive explicit formulas for the distribution of Ï„\tau, and investigate particular cases. Finally, relating Ï„\tau to violation of S-matrix unitarity induced by internal dissipation, we use the same quantity to identify the Anderson delocalisation transition as the phenomenon of spontaneous breakdown of S-matrix unitarity.Comment: This is the published version, with a few modifications added to the last par

    The decay of photoexcited quantum systems: a description within the statistical scattering model

    Full text link
    The decay of photoexcited quantum systems (examples are photodissociation of molecules and autoionization of atoms) can be viewed as a half-collision process (an incoming photon excites the system which subsequently decays by dissociation or autoionization). For this reason, the standard statistical approach to quantum scattering, originally developed to describe nuclear compound reactions, is not directly applicable. Using an alternative approach, correlations and fluctuations of observables characterizing this process were first derived in [Fyodorov YV and Alhassid Y 1998 Phys. Rev. A 58, R3375]. Here we show how the results cited above, and more recent results incorporating direct decay processes, can be obtained from the standard statistical scattering approach by introducing one additional channel.Comment: 7 pages, 2 figure

    Distribution of the local density of states, reflection coefficient and Wigner delay time in absorbing ergodic systems at the point of chiral symmetry

    Full text link
    Employing the chiral Unitary Ensemble of random matrices we calculate the probability distribution of the local density of states for zero-dimensional ("quantum chaotic") two-sublattice systems at the point of chiral symmetry E=0 and in the presence of uniform absorption. The obtained result can be used to find the distributions of the reflection coefficent and of the Wigner time delay for such systems.Comment: 4 pages, 3 figure

    Fluctuations in random RL−CRL-C networks: non-linear σ−\sigma- model description

    Full text link
    Disordered RL−CRL-C networks are known to be an adequate model for describing fluctuations of electric fields in a random metal-dielectric composite. We show that under appropriate conditions the statistical properties of such a system can be studied in the framework of the Efetov's non-linear σ−\sigma- model. This fact provides a direct link to the theory of Anderson localization.Comment: 4 pages, latex, no figure
    • …
    corecore