15 research outputs found

    Preliminary Design of a New Hybrid and Technology Innovative Suborbital Vehicle for Space Tourism

    Get PDF
    The general enthusiasm aroused by space tourism combined with the great technological achievement of Scaled Composites with the SpaceShipOne in 2004 initiated a new era: suborbital space tourism. As of today, most of the vehicles have been designed for performance, combining the most advanced technologies from both aeronautics and astronautics. Nevertheless, in order to become viable, vehicles must be safe enough to carry paying passengers and they must match the increasing demand. Thus, the implementation of a new design process based on adapted requirements led to a new vehicle. The latter is mainly powered by newly designed hybrid rocket engines but it also makes use of turbofans for the first segment of the climb and a safe powered landing. It takes-off and lands horizontally and is able to carry up to eight passengers and two pilots to an altitude of 109 km. The micro-gravity experienced by the passengers lasts approximately 4 minutes while the maximum load factor is reduced to 3.3 g in order to improve the passenger experience

    China’s ambitions

    No full text

    3D printing with moondust

    No full text
    This paper was accepted for publication in the journal Rapid Prototyping Journal and the definitive published version is available at http://dx.doi.org/10.1108/RPJ-02-2015-0022Purpose – The purpose of this paper is to investigate the effect of the main process parameters of Laser Melting (LM) type Additive Manufacturing (AM) on multi layered structures manufactured from JSC-1A Lunar regolith (Moondust) simulant powder. Design/methodology/approach – Laser diffraction technology was used to analyse and confirm the simulant powder material particle sizes and distribution. Geometrical shapes were then manufactured on a Realizer SLM™ 100 using the simulant powder. The laser-processed samples were analysed via Scanning Electron Microscopy (SEM) to evaluate surface and internal morphologies, Energy-dispersive X-ray Spectroscopy (EDS) to analyse the chemical composition after processing and the samples were mechanically investigated via Vickers micro-hardness testing. Findings – A combination of process parameters resulting in an energy density value of 1.011 J/mm2 allowed the successful production of components directly from Lunar regolith simulant. An internal relative porosity of 40.8 %, material hardness of 670 ± 11 HV and a dimensional accuracy of 99.8 % were observed in the fabricated samples. Originality/value – This research paper is investigating the novel application of a Powder Bed Fusion AM process category as a potential on-site manufacturing approach for manufacturing structures/components out of Lunar regolith (Moondust). It was shown that this AM process category has the capability to directly manufacture multi-layered parts out of Lunar regolith, which has potential applicability to future moon colonization

    Users’ Requirements

    No full text
    corecore