9 research outputs found

    Stimulation-Dependent Intraspinal Microtubules and Synaptic Failure in Alzheimer's Disease: A Review

    Get PDF
    There are many microtubules in axons and dendritic shafts, but it has been thought that there were fewer microtubules in spines. Recently, there have been four reports that observed the intraspinal microtubules. Because microtubules originate from the centrosome, these four reports strongly suggest a stimulation-dependent connection between the nucleus and the stimulated postsynaptic membrane by microtubules. In contrast, several pieces of evidence suggest that spine elongation may be caused by the polymerization of intraspinal microtubules. This structural mechanism for spine elongation suggests, conversely, that the synapse loss or spine loss observed in Alzheimer's disease may be caused by the depolymerization of intraspinal microtubules. Based on this evidence, it is suggested that the impairment of intraspinal microtubules may cause spinal structural change and block the translocation of plasticity-related molecules between the stimulated postsynaptic membranes and the nucleus, resulting in the cognitive deficits of Alzheimer's disease

    Lacrimal Hypofunction as a New Mechanism of Dry Eye in Visual Display Terminal Users

    Get PDF
    BACKGROUND: Dry eye has shown a marked increase due to visual display terminal (VDT) use. It remains unclear whether reduced blinking while focusing can have a direct deleterious impact on the lacrimal gland function. To address this issue that potentially affects the life quality, we conducted a large-scale epidemiological study of VDT users and an animal study. METHODOLOGY/PRINCIPAL FINDINGS: Cross sectional survey carried out in Japan. A total of 1025 office workers who use VDT were enrolled. The association between VDT work duration and changes in tear film status, precorneal tear stability, lipid layer status and tear secretion were analyzed. For the animal model study, the rat VDT user model, placing rats onto a balance swing in combination with exposure to an evaporative environment was used to analyze lacrimal gland function. There was no positive relationship between VDT working duration and change in tear film stability and lipid layer status. The odds ratio for decrease in Schirmer score, index of tear secretion, were significantly increased with VDT working year (P = 0.012) and time (P = 0.005). The rat VDT user model, showed chronic reduction of tear secretion and was accompanied by an impairment of the lacrimal gland function and morphology. This dysfunction was recovered when rats were moved to resting conditions without the swing. CONCLUSIONS/SIGNIFICANCE: These data suggest that lacrimal gland hypofunction is associated with VDT use and may be a critical mechanism for VDT-associated dry eye. We believe this to be the first mechanistic link to the pathogenesis of dry eye in office workers

    Zscan4 Is Activated after Telomere Shortening in Mouse Embryonic Stem Cells

    No full text
    ZSCAN4 is a DNA-binding protein that functions for telomere elongation and genomic stability. In vivo, it is specifically expressed at the two-cell stage during mouse development. In vitro, it is transiently expressed in mouse embryonic stem cells (ESCs), only in 5% of the population at one time. Here we attempted to elucidate when, under what circumstances, Zscan4 is activated in ESCs. Using live cell imaging, we monitored the activity of Zscan4 together with the pluripotency marker Rex1. The lengths of the cell cycles in ESCs were diverse. Longer cell cycles were accompanied by shorter telomeres and higher activation of Zscan4. Since activation of Zscan4 is involved in telomere elongation, we speculate that the extended cell cycles accompanied by Zscan4 activation reflect the time for telomere recovery. Rex1 and Zscan4 did not show any correlation. Taken together, we propose that Zscan4 is activated to recover shortened telomeres during extended cell cycles, irrespective of the pluripotent status

    Transcription Factor Network in Embryonic Stem Cells: Heterogeneity under the Stringency

    No full text

    Capacity of Retinal Ganglion Cells Derived from Human Induced Pluripotent Stem Cells to Suppress T-Cells

    Get PDF
    Retinal ganglion cells (RGCs) are impaired in patients such as those with glaucoma and optic neuritis, resulting in permanent vision loss. To restore visual function, development of RGC transplantation therapy is now underway. Induced pluripotent stem cells (iPSCs) are an important source of RGCs for human allogeneic transplantation. We therefore analyzed the immunological characteristics of iPSC-derived RGCs (iPSC-RGCs) to evaluate the possibility of rejection after RGC transplantation. We first assessed the expression of human leukocyte antigen (HLA) molecules on iPSC-RGCs using immunostaining, and then evaluated the effects of iPSC-RGCs to activate lymphocytes using the mixed lymphocyte reaction (MLR) and iPSC-RGC co-cultures. We observed low expression of HLA class I and no expression of HLA class II molecules on iPSC-RGCs. We also found that iPSC-RGCs strongly suppressed various inflammatory immune cells including activated T-cells in the MLR assay and that transforming growth factor-β2 produced by iPSC-RGCs played a critical role in suppression of inflammatory cells in vitro. Our data suggest that iPSC-RGCs have low immunogenicity, and immunosuppressive capacity on lymphocytes. Our study will contribute to predicting immune attacks after RGC transplantation.This work was supported by the Research Center Network for Realization of Regenerative Medicine from the Japan Agency for Medical Research and Development (AMED) to M.T., and by a Scientific Research Grant (B, 18H02959) from the Ministry of Education, Culture, Sports, Science and Technology of Japan to S.S. A.E. was financially supported from RIKEN by a Junior Research Associate (JRA) program for graduate students
    corecore