423 research outputs found

    Effect of River Levee with Geosynthetic-Reinforced Soil against Overflow Erosion and Infiltration

    Get PDF
    Overflows from huge floods have caused levee breaches in a great number of places, including Japan. To prevent such destruction and thereby increase the resistance of armored levees to overflow erosion, in this study, we examined the performances of Geosynthetic-Reinforced Soil (GRS) levees against overflow erosion under various conditions, such as reinforcement, back slopes, and geo-grid layers. In addition, we investigated the effect of geo-grid layers on the infiltration of levees. The model tests revealed that 1) with scour protection in front of the toe of the back slope, the GRS levee exhibits much higher resistance against overflow erosion than the armored levee; 2) the armored levee with a steep back slope (= 1:0.5) collapsed faster than that with a normal slope (= 1:2). However, the GRS levee with a steep back slope of 1:0.5 maintained high resistance against overflow erosion after the target time. 3) The GRS levee with partial and full reinforcements had a comparably high resistance against overflow erosion. 4) The GRS levee using a small-sized geo-grid maintained a high residual ratio of the cross-sectional area over a long period. 5) The infiltration discharge of the GRS levee was lesser than that of the levee with no reinforcement due to the reduction in infiltration erosion in the GRS levee. These facts suggest that the GRS levee with partial reinforcement can be applied to the reinforcement of existing levees, and appropriately sized geo-grid layers should be selected

    The factors associated with pain severity in patients with knee osteoarthritis vary according to the radiographic disease severity: a cross-sectional study

    Get PDF
    SummaryObjectivesKnee osteoarthritis (OA) pain is suggested to be associated with inflammation and detrimental mechanical loading across the joint. In this cross-sectional study, we simultaneously examined the inflammation and alignment of the lower limb and examined how the pain components varied depending on the disease progression.DesignOne-hundred sixty female medial type of early- [n = 74 in Kellgren–Lawrence (K/L) 2] to advanced-stage (n = 96 in K/L >2) knee OA subjects (70.5 years on average) were enrolled. Knee pain was evaluated using a pain visual analog scale (VAS) and the pain-related subcategory of the Japanese Knee Osteoarthritis Measure (JKOM-pain). The serum interleukin (sIL)-6 level reflecting synovitis, and the high sensitivity C-reactive protein (hs-CRP) level were measured to evaluate the severity of inflammation. The anatomical axis angle (AAA) was measured as an alignment index. The β-coefficient was estimated after adjusting for age and the body mass index (BMI) using a multiple linear regression analysis.ResultsMultiple linear regression analyses showed that the sIL-6 levels, but not AAA, associated with the pain VAS [β = 10.77 (95% confidence interval (CI): 4.14–17.40), P < 0.01] and JKOM-pain scores [β = 3.19 (95% CI: 1.93–4.44), P < 0.001] in the early stage. Conversely, AAA, but not the sIL-6 levels, was found to be associated with the pain VAS [β = −1.29 (95% CI: −2.51 to −0.08), P < 0.05] and JKOM-pain scores [β = −0.49 (95% CI: −0.82 to −0.16), P < 0.01] in the advanced stage.ConclusionsThe presence of a higher level of sIL-6 and the varus alignment of the joint is associated with pain in early- and advanced-stage knee OA patients, respectively

    The degeneration and destruction of femoral articular cartilage shows a greater degree of deterioration than that of the tibial and patellar articular cartilage in early stage knee osteoarthritis: a cross-sectional study

    Get PDF
    SummaryObjectiveThe aim of the present study was to examine whether the degenerative and morphological changes of articular cartilage in early stage knee osteoarthritis (OA) occurred equally for both femoral- and tibial- or patellar- articular cartilage using magnetic resonance imaging (MRI)-based analyses.DesignThis cross-sectional study was approved by the ethics committee of our university. Fifty patients with early stage painful knee OA were enrolled. The patients underwent 3.0 T MRI on the affected knee joint. Healthy volunteers who did not show MRI-based OA changes were also recruited as controls (n = 19). The degenerative changes of the articular cartilage were quantified by a T2 mapping analysis, and any structural changes were conducted using Whole Organ Magnetic Resonance Imaging Score (WORMS) technique.ResultsAll patients showed MRI-detected OA morphological changes. The T2 values of femoral condyle (FC) (P < 0.0001) and groove (P = 0.0001) in patients with early stage knee OA were significantly increased in comparison to those in the control, while no significant differences in the T2 values of patellar and tibial plateau (TP) were observed between the patients and the control. The WORMS cartilage and osteophyte scores of the femoral articular cartilage were significantly higher than those in the patellar- (P = 0.001 and P = 0.007, respectively) and tibial- (P = 0.0001 and P < 0.0001, respectively) articular cartilage in the patients with early stage knee OA.ConclusionsThe degradation and destruction of the femoral articular cartilage demonstrated a greater degree of deterioration than those of the tibial- and patellar- articular cartilage in patients with early stage knee OA

    RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress

    Get PDF
    Mutations in RECQL4 helicase are associated with Rothmund–Thomson syndrome (RTS). A subset of RTS patients is predisposed to cancer and is sensitive to DNA damaging agents. The enhanced sensitivity of cells from RTS patients correlates with the accumulation of transcriptionally active nuclear p53. We found that in untreated normal human cells these two nuclear proteins, p53 and RECQL4, instead colocalize in the mitochondrial nucleoids. RECQL4 accumulates in mitochondria in all phases of the cell cycle except S phase and physically interacts with p53 only in the absence of DNA damage. p53–RECQL4 binding leads to the masking of the nuclear localization signal of p53. The N-terminal 84 amino acids of RECQL4 contain a mitochondrial localization signal, which causes the localization of RECQL4–p53 complex to the mitochondria. RECQL4–p53 interaction is disrupted after stress, allowing p53 translocation to the nucleus. In untreated normal cells RECQL4 optimizes de novo replication of mtDNA, which is consequently decreased in fibroblasts from RTS patients. Wild-type RECQL4-complemented RTS cells show relocalization of both RECQL4 and p53 to the mitochondria, loss of p53 activation, restoration of de novo mtDNA replication and resistance to different types of DNA damage. In cells expressing Δ84 RECQL4, which cannot translocate to mitochondria, all the above functions are compromised. The recruitment of p53 to the sites of de novo mtDNA replication is also regulated by RECQL4. Thus these findings elucidate the mechanism by which p53 is regulated by RECQL4 in unstressed normal cells and also delineates the mitochondrial functions of the helicase

    Praktična sinteza regulatora za precizno pozicioniranje sustava pomične podloge

    Get PDF
    This paper presents a practical feedback controller design of a ball screw-driven table system for the microdisplacement positioning. Friction of the mechanism in the micro-displacement region has nonlinear elastic properties, unlike Coulomb and/or viscous friction in the macro-displacement, resulting in different positioning responses and frequency characteristics of the plant depending on the regions. In this paper, at first, a numerical simulator with a rolling friction model is adopted to reproduce the positioning behaviors in the micro-displacement region. Based on the simulator, the stability condition of positioning in the region is clarified on the basis of frequency characteristics and, then, appropriate parameters of feedback controller are practically designed to satisfy the required positioning performance. Effectiveness of the proposed design has been verified by a series of experiments using a prototype of ball screw-driven table positioning device.U radu je prikazana sinteza regulatora s povratnom vezom u sustavu za precizno linearno pozicioniranje pomične podloge pomoću kugličnih ležajeva. Za razliku od uobičajenih modela Coulombova i/ili viskoznog trenja, trenje razmatranog sustava ima izrazito nelinearna svojstva u području mikro-pomaka, što za posljedicu ima različite odzive pozicioniranja i frekvencijski karakteristike, ovisno o radnom području. U radu je prvo razvijeno numeričko simulacijsko okruženje zasnovano na modelu trenja kotrljanja u svrhu simuliranja ponašanja sustava pozicioniranja u području mikropomaka. Potom je, zasnivajući se na simulacijskom okruženju, pomoću frekvencijske karakteristike razjašnjen problem stabilnosti sustava u promatranom radnom području te su odabrani odgovarajući parametri regulatora koji poštuju uvjet stabilnosti i zadovoljavaju željenu kvalitetu odziva. Sinteza regulatora provedena je vodeći računa o praktičnoj primjenjivosti postupka. Učinkovitost predložene sinteze potvr.ena je nizom eksperimenata na prototipu sustava za precizno linearno pozicioniranje pomične podloge pomoću kugličnih ležajeva

    Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    Full text link
    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the deformed soliton and the kaon.Comment: 24 pages, LaTeX, 8 eps file
    corecore