7 research outputs found
Effects of rapid prey evolution on predator-prey cycles
We study the qualitative properties of population cycles in a predator-prey
system where genetic variability allows contemporary rapid evolution of the
prey. Previous numerical studies have found that prey evolution in response to
changing predation risk can have major quantitative and qualitative effects on
predator-prey cycles, including: (i) large increases in cycle period, (ii)
changes in phase relations (so that predator and prey are cycling exactly out
of phase, rather than the classical quarter-period phase lag), and (iii)
"cryptic" cycles in which total prey density remains nearly constant while
predator density and prey traits cycle. Here we focus on a chemostat model
motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003]
with algae (prey) and rotifers (predators), in which the prey exhibit rapid
evolution in their level of defense against predation. We show that the effects
of rapid prey evolution are robust and general, and furthermore that they occur
in a specific but biologically relevant region of parameter space: when traits
that greatly reduce predation risk are relatively cheap (in terms of reductions
in other fitness components), when there is coexistence between the two prey
types and the predator, and when the interaction between predators and
undefended prey alone would produce cycles. Because defense has been shown to
be inexpensive, even cost-free, in a number of systems [Andersson and Levin
1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be
reproduced in other model systems, and in nature. Finally, some of our key
results are extended to a general model in which functional forms for the
predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure
Causes of maladaptation
Evolutionary biologists tend to approach the study of the natural world within a framework of adaptation, inspired perhaps by the power of natural selection to produce fitness advantages that drive population persistence and biological diversity. In contrast, evolution has rarely been studied through the lens of adaptation's complement, maladaptation. This contrast is surprising because maladaptation is a prevalent feature of evolution: population trait values are rarely distributed optimally; local populations often have lower fitness than imported ones; populations decline; and local and global extinctions are common. Yet we lack a general framework for understanding maladaptation; for instance in terms of distribution, severity, and dynamics. Similar uncertainties apply to the causes of maladaptation. We suggest that incorporating maladaptation-based perspectives into evolutionary biology would facilitate better understanding of the natural world. Approaches within a maladaptation framework might be especially profitable in applied evolution contexts – where reductions in fitness are common. Toward advancing a more balanced study of evolution, here we present a conceptual framework describing causes of maladaptation. As the introductory article for a Special Feature on maladaptation, we also summarize the studies in this Issue, highlighting the causes of maladaptation in each study. We hope that our framework and the papers in this Special Issue will help catalyze the study of maladaptation in applied evolution, supporting greater understanding of evolutionary dynamics in our rapidly changing world