210 research outputs found
An engineered mammalian band-pass network
Gene expression circuitries, which enable cells to detect precise levels within a morphogen concentration gradient, have a pivotal impact on biological processes such as embryonic pattern formation, paracrine and autocrine signalling, and cellular migration. We present the rational synthesis of a synthetic genetic circuit exhibiting band-pass detection characteristics. The components, involving multiply linked mammalian trans-activator and -repressor control systems, were selected and fine-tuned to enable the detection of ‘low-threshold’ morphogen (tetracycline) concentrations, in which target gene expression was triggered, and a ‘high-threshold’ concentration, in which expression was muted. In silico predictions and supporting experimental findings indicated that the key criterion for functional band-pass detection was the matching of componentry that enabled sufficient separation of the low and high threshold points. Using the circuitry together with a fluorescence-encoded target gene, mammalian cells were genetically engineered to be capable of forming a band-like pattern of differentiation in response to a tetracycline chemical gradient. Synthetic gene networks designed to emulate naturally occurring gene behaviours provide not only insight into biological processes, but may also foster progress in future tissue engineering, gene therapy and biosensing applications
Recommended from our members
Message in a Bottle: How Prodactivist Consumer Communities Compete in the Mainstream Market.
This study explains how “prodactivist” communities can compete in the mainstream market by pursuing a confrontative market entry strategy. We offer a conceptualization of this strategy with regards to its underlying rationale, key engagement motive, existential threats, defense tactics, and dissolution mechanis
Intronically encoded siRNAs improve dynamic range of mammalian gene regulation systems and toggle switch
Applications of conditional gene expression, whether for therapeutic or basic research purposes, are increasingly requiring mammalian gene control systems that exhibit far tighter control properties. While numerous approaches have been used to improve the widely used Tet-regulatory system, many applications, particularly with respect to the engineering of synthetic gene networks, will require a broader range of tightly performing gene control systems. Here, a generically applicable approach is described that utilizes intronically encoded siRNA on the relevant transregulator construct, and siRNA sequence-specific tags on the reporter construct, to minimize basal gene activity in the off-state of a range of common gene control systems. To demonstrate tight control of residual expression the approach was successfully used to conditionally express the toxic proteins RipDD and Linamarase. The intronic siRNA concept was also extended to create a new generation of compact, single-vector, autoinducible siRNA vectors. Finally, using improved regulation systems a mammalian epigenetic toggle switch was engineered that exhibited superior in vitro and in vivo induction characteristics in mice compared to the equivalent non-intronic system
Statistical Model of Shape Moments with Active Contour Evolution for Shape Detection and Segmentation
This paper describes a novel method for shape representation and robust image segmentation. The proposed method combines two well known methodologies, namely, statistical shape models and active contours implemented in level set framework. The shape detection is achieved by maximizing a posterior function that consists of a prior shape probability model and image likelihood function conditioned on shapes. The statistical shape model is built as a result of a learning process based on nonparametric probability estimation in a PCA reduced feature space formed by the Legendre moments of training silhouette images. A greedy strategy is applied to optimize the proposed cost function by iteratively evolving an implicit active contour in the image space and subsequent constrained optimization of the evolved shape in the reduced shape feature space. Experimental results presented in the paper demonstrate that the proposed method, contrary to many other active contour segmentation methods, is highly resilient to severe random and structural noise that could be present in the data
Therapeutic protein transduction of mammalian cells and mice by nucleic acid-free lentiviral nanoparticles
The straightforward production and dose-controlled administration of protein therapeutics remain major challenges for the biopharmaceutical manufacturing and gene therapy communities. Transgenes linked to HIV-1-derived vpr and pol-based protease cleavage (PC) sequences were co-produced as chimeric fusion proteins in a lentivirus production setting, encapsidated and processed to fusion peptide-free native protein in pseudotyped lentivirions for intracellular delivery and therapeutic action in target cells. Devoid of viral genome sequences, protein-transducing nanoparticles (PTNs) enabled transient and dose-dependent delivery of therapeutic proteins at functional quantities into a variety of mammalian cells in the absence of host chromosome modifications. PTNs delivering Manihot esculenta linamarase into rodent or human, tumor cell lines and spheroids mediated hydrolysis of the innocuous natural prodrug linamarin to cyanide and resulted in efficient cell killing. Following linamarin injection into nude mice, linamarase-transducing nanoparticles impacted solid tumor development through the bystander effect of cyanid
Therapeutic protein transduction of mammalian cells and mice by nucleic acid-free lentiviral nanoparticles
The straightforward production and dose-controlled administration of protein therapeutics remain major challenges for the biopharmaceutical manufacturing and gene therapy communities. Transgenes linked to HIV-1-derived vpr and pol-based protease cleavage (PC) sequences were co-produced as chimeric fusion proteins in a lentivirus production setting, encapsidated and processed to fusion peptide-free native protein in pseudotyped lentivirions for intracellular delivery and therapeutic action in target cells. Devoid of viral genome sequences, protein-transducing nanoparticles (PTNs) enabled transient and dose-dependent delivery of therapeutic proteins at functional quantities into a variety of mammalian cells in the absence of host chromosome modifications. PTNs delivering Manihot esculenta linamarase into rodent or human, tumor cell lines and spheroids mediated hydrolysis of the innocuous natural prodrug linamarin to cyanide and resulted in efficient cell killing. Following linamarin injection into nude mice, linamarase-transducing nanoparticles impacted solid tumor development through the bystander effect of cyanide
Epigenetic Engineering of Ribosomal RNA Genes Enhances Protein Production
Selection of mammalian high-producer cell lines remains a major challenge for the biopharmaceutical manufacturing industry. Ribosomal RNA (rRNA) genes encode the major component of the ribosome but many rRNA gene copies are not transcribed [1]–[5] due to epigenetic silencing by the nucleolar remodelling complex (NoRC) [6], which may limit the cell's full production capacity. Here we show that the knockdown of TIP5, a subunit of NoRC, decreases the number of silent rRNA genes, upregulates rRNA transcription, enhances ribosome synthesis and increases production of recombinant proteins. However, general enhancement of rRNA transcription rate did not stimulate protein synthesis. Our data demonstrates that the number of transcriptionally competent rRNA genes limits efficient ribosome synthesis. Epigenetic engineering of ribosomal RNA genes offers new possibilities for improving biopharmaceutical manufacturing and provides novel insights into the complex regulatory network which governs the translation machinery in normal cellular processes as well as in pathological conditions like cancer
Bistability in Apoptosis by Receptor Clustering
Apoptosis is a highly regulated cell death mechanism involved in many
physiological processes. A key component of extrinsically activated apoptosis
is the death receptor Fas, which, on binding to its cognate ligand FasL,
oligomerize to form the death-inducing signaling complex. Motivated by recent
experimental data, we propose a mathematical model of death ligand-receptor
dynamics where FasL acts as a clustering agent for Fas, which form locally
stable signaling platforms through proximity-induced receptor interactions.
Significantly, the model exhibits hysteresis, providing an upstream mechanism
for bistability and robustness. At low receptor concentrations, the bistability
is contingent on the trimerism of FasL. Moreover, irreversible bistability,
representing a committed cell death decision, emerges at high concentrations,
which may be achieved through receptor pre-association or localization onto
membrane lipid rafts. Thus, our model provides a novel theory for these
observed biological phenomena within the unified context of bistability.
Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our
model also suggests a mechanism by which cells may function as bistable
life/death switches independently of any such dynamics in their downstream
components. Our results highlight the role of death receptors in deciding cell
fate and add to the signal processing capabilities attributed to receptor
clustering.Comment: Accepted by PLoS Comput Bio
Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death
BH3 mimetics have been proposed as new anticancer therapeutics. They target
anti-apoptotic Bcl-2 proteins, up-regulation of which has been implicated in
the resistance of many cancer cells, particularly leukemia and lymphoma cells,
to apoptosis. Using probabilistic computational modeling of the mitochondrial
pathway of apoptosis, verified by single-cell experimental observations, we
develop a model of Bcl-2 inhibition of apoptosis. Our results clarify how Bcl-2
imparts its anti-apoptotic role by increasing the time-to-death and
cell-to-cell variability. We also show that although the commitment to death is
highly impacted by differences in protein levels at the time of stimulation,
inherent stochastic fluctuations in apoptotic signaling are sufficient to
induce cell-to-cell variability and to allow single cells to escape death. This
study suggests that intrinsic cell-to-cell stochastic variability in apoptotic
signaling is sufficient to cause fractional killing of cancer cells after
exposure to BH3 mimetics. This is an unanticipated facet of cancer
chemoresistance.Comment: 11 pages, In pres
Real-Time Dynamics of Ca2+, Caspase-3/7, and Morphological Changes in Retinal Ganglion Cell Apoptosis under Elevated Pressure
Quantitative information on the dynamics of multiple molecular processes in individual live cells under controlled stress is central to the understanding of the cell behavior of interest and the establishment of reliable models. Here, the dynamics of the apoptosis regulator intracellular Ca2+, apoptosis effector caspase-3/7, and morphological changes, as well as temporal correlation between them at the single cell level, are examined in retinal gangling cell line (differentiated RGC-5 cells) undergoing apoptosis at elevated hydrostatic pressure using a custom-designed imaging platform that allows long-term real-time simultaneous imaging of morphological and molecular-level physiological changes in large numbers of live cells (beyond the field-of-view of typical microscopy) under controlled hydrostatic pressure. This examination revealed intracellular Ca2+ elevation with transient single or multiple peaks of less than 0.5 hour duration appearing at the early stages (typically less than 5 hours after the onset of 100 mmHg pressure) followed by gradual caspase-3/7 activation at late stages (typically later than 5 hours). The data reveal a strong temporal correlation between the Ca2+ peak occurrence and morphological changes of neurite retraction and cell body shrinkage. This suggests that Ca2+ elevation, through its impact on ion channel activity and water efflux, is likely responsible for the onset of apoptotic morphological changes. Moreover, the data show a significant cell-to-cell variation in the onset of caspase-3/7 activation, an inevitable consequence of the stochastic nature of the underlying biochemical reactions not captured by conventional assays based on population-averaged cellular responses. This real-time imaging study provides, for the first time, statistically significant data on simultaneous multiple molecular level changes to enable refinements and testing of models of the dynamics of mitochondria-mediated apoptosis. Further, the platform developed and the approach has direct significance to the study of a variety of signaling pathway phenomena
- …