2,517 research outputs found
Hard X-ray emission from the galaxy cluster A2256
After the positive detection by BeppoSAX of hard X-ray radiation up to ~80
keV in the Coma cluster spectrum, we present evidence for nonthermal emission
from A2256 in excess of thermal emission at a 4.6sigma confidence level. In
addition to this power law component, a second nonthermal component already
detected by ASCA could be present in the X-ray spectrum of the cluster, not
surprisingly given the complex radio morphology of the cluster central region.
The spectral index of the hard tail detected by the PDS onboard BeppoSAX is
marginally consistent with that expected by the inverse Compton model. A value
of ~0.05 microG is derived for the intracluster magnetic field of the extended
radio emission in the northern regions of the cluster, while a higher value of
\~0.5 microG could be present in the central radio halo, likely related to the
hard tail detected by ASCA.Comment: 10 pages, 2 figures. To appear in ApJ
Pten alterations and their role in cancer management: Are we making headway on precision medicine?
Alterations in the tumor suppressor phosphatase and tensin homolog (PTEN) occur in a substantial proportion of solid tumors. These events drive tumorigenesis and tumor progression. Given its central role as a downregulator of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, PTEN is deeply involved in cell growth, proliferation, and survival. This gene is also implicated in the modulation of the DNA damage response and in tumor immune microenvironment modeling. Despite the actionability of PTEN alterations, their role as biomarkers remains controversial in clinical practice. To date, there is still a substantial lack of validated guidelines and/or recommendations for PTEN testing. Here, we provide an update on the current state of knowledge on biologic and genetic alterations of PTEN across the most frequent solid tumors, as well as on their actual and/or possible clinical applications. We focus on possible tailored schemes for cancer patients\u2019 clinical management, including risk assessment, diagnosis, prognostication, and treatment
Targeting immune-related biological processes in solid tumors : we do need biomarkers
Immunotherapy has become the standard-of-care in many solid tumors. Despite the significant recent achievements in the diagnosis and treatment of cancer, several issues related to patients' selection for immunotherapy remain unsolved. Multiple lines of evidence suggest that, in this setting, the vision of a single biomarker is somewhat na\uefve and imprecise, given that immunotherapy does not follow the rules that we have experienced in the past for targeted therapies. On the other hand, additional immune-related biomarkers that are reliable in real-life clinical practice remain to be identified. Recently, the immune-checkpoint blockade has been approved in the US irrespective of the tumor site of origin. Further histology-agnostic approvals, coupled with with tumor-specific companion diagnostics and guidelines, are expected in this field. In addition, immune-related biomarkers can also have a significant prognostic value. In this review, we provide an overview of the role of these biomarkers and their characterization in the management of lung cancer, melanoma, colorectal cancer, gastric cancer, head and neck cancer, renal cell carcinoma, urothelial cancers, and breast cancer
Cystic echinococcosis in wild boars (Sus scrofa) from southern Italy: Epidemiological survey and molecular characterization.
Cystic Echinococcosis (CE) caused by Echinococcus granulosus sensu lato (s.l.) is one of the most important parasitic zoonotic diseases in the world and it represents an important public health and socio-economic concern. In the Mediterranean basin, CE is widespread and it is endemic in Italy, with major prevalence in southern areas. Several studies have investigated CE in domestic pigs, however, such data in wild boars are scant. In the last decades the wild boar population in Italy has increased and this ungulate could play an important role in the spreading ofCEinthewild.Here wereporton theprevalenceandfertility rateofhydatid cystsinwildboarsthat were shot during two hunting seasons (2016â2017) in the Campania region of southern Italy. For each animal, a detailed inspection of the carcass and organs (lungs, liver and spleen) was performed and when cysts were found, their number, morphology and fertility were determined by visual and microscopic examination. Cysts were classiïŹed morphologically as fertile, sterile, caseous and calciïŹed. Protoscoleces and germinal layers were collected from individual cysts and DNA was extracted to identify diïŹerent strains/genotypes of E. granulosus s.l. Outofatotalof2108wildboars93(4.4%)werefoundpositiveforCE.Infectedanimalswere45malesand48 females, aged between 1 and 8 years. The average number of cysts per wild boar was 1.3 (min 1 - max 13). The total number of cysts collected was 123, of which 118 (95.9%) in the liver, 4 (3.3%) in the lungs and 1 (0.8%) in the spleen. Of all analyzed cysts, 70 (56.9%) were fertile and 53 (43.1%) sterile/acephalous. The presence of fertile cysts in 19.4% of CE-positive animals is noteworthy. Overall, molecular diagnosis showed 19 wild boars infected with the pig strain (G7)
Developing innovative systems for reinforced masonry walls
The Commission of the European Communities has recently funded a CRAFT research project aimed at developing innovative systems for load and non-load-bearing reinforced masonry walls. The project involves twelve partners coming from four different European countries, among which there are universities and research centres, small and medium enterprises for the production of clay and concrete units and mortars, a company for advanced metal products and industrial associations of brick and block producers.
The development of the reinforced masonry walls is based on the advancement of vertical reinforcement and fastenings, of mortar and concrete and on their integration with special clay and concrete blocks for the definition of new construction systems. The foreseen advantages are: new possibilities for masonry; more economical construction; quality increase for masonry walls; crack-free and earthquake resistant construction. The project follows three steps: assessment of the technical and economical feasibility of the envisaged construction technologies by means of extensive experimental and numerical activities; construction of prototypes as demonstration of the proposed technologies and materials; in situ testing to completely validate the systems.
In the present contribution, an overview of the main objectives and steps of the project is given. Furthermore, the different construction systems that are being developed and designed are described. The main fields of application and the main technical problems encountered for the different construction systems is described, together with the experimental program outlined in order to characterize their mechanical behaviour under different serviceability and ultimate conditions
Geocentrism reexamined
The universe is nearly isotropic on very large scales. It is much more
difficult to show that the universe is radially homogeneous (independent of
distance), or equivalently, that it is isotropic about distant points. This
taken as an axiom, since if it were not true, then we would occupy a preferred
position. This paper considers several empirical arguments for radial
homogeneity based on the cosmic microwave background (CMB). The tightest limits
on inhomogeneity on the scale of the horizon are of order ten percent but will
improve soon. These limits involve the Sunyaev-Zel'dovich effect in clusters of
galaxies, excitation of low-energy atomic transitions, and the accurately
thermal spectrum of the CMB. Weaker limits from primordial nucleosynthesis are
discussed briefly.Comment: RevTeX source, 14 pages, no figs. To appear Phys Rev
Genetic contributions to visuospatial cognition in Williams syndrome: insights from two contrasting partial deletion patients
Background
Williams syndrome (WS) is a rare neurodevelopmental disorder arising from a hemizygotic deletion of approximately 27 genes on chromosome 7, at locus 7q11.23. WS is characterised by an uneven cognitive profile, with serious deficits in visuospatial tasks in comparison to relatively proficient performance in some other cognitive domains such as language and face processing. Individuals with partial genetic deletions within the WS critical region (WSCR) have provided insights into the contribution of specific genes to this complex phenotype. However, the combinatorial effects of different genes remain elusive.
Methods
We report on visuospatial cognition in two individuals with contrasting partial deletions in the WSCR: one female (HR), aged 11 years 9 months, with haploinsufficiency for 24 of the WS genes (up to GTF2IRD1), and one male (JB), aged 14 years 2 months, with the three most telomeric genes within the WSCR deleted, or partially deleted.
Results
Our in-depth phenotyping of the visuospatial domain from table-top psychometric, and small- and large-scale experimental tasks reveal a profile in HR in line with typically developing controls, albeit with some atypical features. These data are contrasted with patient JBâs atypical profile of strengths and weaknesses across the visuospatial domain, as well as with more substantial visuospatial deficits in individuals with the full WS deletion.
Conclusions
Our findings point to the contribution of specific genes to spatial processing difficulties associated with WS, highlighting the multifaceted nature of spatial cognition and the divergent effects of genetic deletions within the WSCR on different components of visuospatial ability. The importance of general transcription factors at the telomeric end of the WSCR, and their combinatorial effects on the WS visuospatial phenotype are also discussed
- âŠ