23 research outputs found

    An Endogenous Murine Leukemia Viral Genome Contaminant in a Commercial RT-PCR Kit is Amplified Using Standard Primers for XMRV

    Get PDF
    During pilot studies to investigate the presence of viral RNA of xenotropic murine leukemia virus (MLV)-related virus (XMRV) infection in sera from chronic fatigue syndrome (CFS) patients in Japan, a positive band was frequently detected at the expected product size in negative control samples when detecting a partial gag region of XMRV using a one-step RT-PCR kit. We suspected that the kit itself might have been contaminated with small traces of endogenous MLV genome or XMRV and attempted to evaluate the quality of the kit in two independent laboratories. We purchased four one-step RT-PCR kits from Invitrogen, TaKaRa, Promega and QIAGEN in Japan. To amplify the partial gag gene of XMRV or other MLV-related viruses, primer sets (419F and 1154R, and GAG-I-F and GAG-I-R) which have been widely used in XMRV studies were employed. The nucleotide sequences of the amplicons were determined and compared with deposited sequences of a polytropic endogenous MLV (PmERV), XMRV and endogenous MLV-related viruses derived from CFS patients. We found that the enzyme mixtures of the one-step RT-PCR kit from Invitrogen were contaminated with RNA derived from PmERV. The nucleotide sequence of a partial gag region of the contaminant amplified by RT-PCR was nearly identical (99.4% identity) to a PmERV on chromosome 7 and highly similar (96.9 to 97.6%) to recently identified MLV-like viruses derived from CFS patients. We also determined the nucleotide sequence of a partial env region of the contaminant and found that it was almost identical (99.6%) to the PmERV. In the investigation of XMRV infection in patients of CFS and prostate cancer, researchers should prudently evaluate the test kits for the presence of endogenous MLV as well as XMRV genomes prior to PCR and RT-PCR tests

    No association of xenotropic murine leukemia virus-related virus with prostate cancer or chronic fatigue syndrome in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The involvement of xenotropic murine leukemia virus-related virus (XMRV) in prostate cancer (PC) and chronic fatigue syndrome (CFS) is disputed as its reported prevalence ranges from 0% to 25% in PC cases and from 0% to more than 80% in CFS cases. To evaluate the risk of XMRV infection during blood transfusion in Japan, we screened three populations--healthy donors (<it>n </it>= 500), patients with PC (<it>n </it>= 67), and patients with CFS (<it>n </it>= 100)--for antibodies against XMRV proteins in freshly collected blood samples. We also examined blood samples of viral antibody-positive patients with PC and all (both antibody-positive and antibody-negative) patients with CFS for XMRV DNA.</p> <p>Results</p> <p>Antibody screening by immunoblot analysis showed that a fraction of the cases (1.6-3.0%) possessed anti-Gag antibodies regardless of their gender or disease condition. Most of these antibodies were highly specific to XMRV Gag capsid protein, but none of the individuals in the three tested populations retained strong antibody responses to multiple XMRV proteins. In the viral antibody-positive PC patients, we occasionally detected XMRV genes in plasma and peripheral blood mononuclear cells but failed to isolate an infectious or full-length XMRV. Further, all CFS patients tested negative for XMRV DNA in peripheral blood mononuclear cells.</p> <p>Conclusion</p> <p>Our data show no solid evidence of XMRV infection in any of the three populations tested, implying that there is no association between the onset of PC or CFS and XMRV infection in Japan. However, the lack of adequate human specimens as a positive control in Ab screening and the limited sample size do not allow us to draw a firm conclusion.</p

    Mouse Model for the Equilibration Interaction between the Host Immune System and Human T-Cell Leukemia Virus Type 1 Gene Expression

    No full text
    To study the involvement of immune responses against Tax of human T-cell leukemia virus type 1 (HTLV-1) in the growth of and gene suppression in Tax-expressing tumor cells in vivo, we established a model system involving C57BL/6J mice and a syngeneic lymphoma cell line, EL4. When mice were immunized by DNA-based immunization with Tax expression plasmids, solid tumor formation upon subcutaneous inoculation of EL4 cells expressing green fluorescent protein-fused Tax (Gax) under the control of the HTLV-1 enhancer was strongly inhibited, and in vitro analysis showed that DNA immunization elicited cytotoxic T-lymphocyte (CTL) responses but not production of antibodies to Tax protein. Since EL4/Gax cells inoculated into DNA-immunized mice were not completely eradicated but were maintained as small solid tumors for a long period, there appeared to be a certain equilibrium between CTL activity and the growth of Gax-expressing cells. With such a balance, expression of the Gax gene in EL4/Gax cells was strongly suppressed. These results suggested that gene expression under the control of the HTLV-1 long terminal repeat and Tax is silenced in vivo, resulting in an equilibrium between viral expression and the host immune system. Such a balance would represent a status of persistent infection by HTLV-1 in virus-infected individuals during the latency period

    Analysis of Binding Sites for the New Small-Molecule CCR5 Antagonist TAK-220 on Human CCR5

    No full text
    G protein-coupled receptor CCR5 is the main coreceptor for macrophage-tropic human immunodeficiency virus type 1 (HIV-1), and various small-molecule CCR5 antagonists are being developed to treat HIV-1 infection. It has been reported that such CCR5 antagonists, including TAK-779, bind to a putative binding pocket formed by transmembrane domains (TMs) 1, 2, 3 and 7 of CCR5, indicating the importance of the conformational changes of the TMs during virus entry. In this report, using a single-round infection assay with human CCR5 and its substitution mutants, we demonstrated that a new CCR5 antagonist, TAK-220, shares the putative interacting amino acid residues Asn252 and Leu255 in TM6 with TAK-779 but also requires the distinct residues Gly163 and Ile198 in TMs 4 and 5, respectively, for its inhibitory effect. We suggested that, together with molecular models of the interactions between the drugs and CCR5, the inhibitory activity of TAK-220 could involve direct interactions with amino acid residues in TMs 4, 5, and 6 in addition to those in the previously postulated binding pocket. The possible interaction of drugs with additional regions of the CCR5 molecule would help to develop a new small-molecule CCR5 antagonist

    Novel neutralizing human monoclonal antibodies against tetanus neurotoxin

    No full text
    Abstract Tetanus is a fatal disease caused by tetanus neurotoxin (TeNT). TeNT is composed of a light chain (Lc) and a heavy chain, the latter of which is classified into two domains, N-terminus Hn and C-terminus Hc. Several TeNT-neutralizing antibodies have been reported, but it remains unclear which TeNT domains are involved in neutralization. To further understand the mechanism of these antibodies, we isolated TeNT-reactive human antibody clones from peripheral blood mononuclear cells. We then analyzed the reactivity of the isolated antibody clones to each protein domain and their inhibition of Hc-ganglioside GT1b binding, which is critical for TeNT toxicity. We also investigated the TeNT-neutralizing ability of isolated antibody clones and showed that an Hn-reactive clone protected strongly against TeNT toxicity in mice. Furthermore, combination treatment of Hn-reactive antibody clones with both Hc-reactive and TeNT mix (the mixture of Hc, Hn, and Lc proteins)–reactive antibody clones enhanced the neutralizing effect. These results indicated that antibody clones targeting Hn effectively neutralized TeNT. In addition, the use of a cocktail composed of Hc-, Hn-, and TeNT mix–reactive antibodies provided enhanced protection compared to the use of each antibody alone

    UV light-emitting diode (UV-LED) at 265 nm as a potential light source for disinfecting human platelet concentrates.

    No full text
    The risk of sepsis through bacterial transmission is one of the most serious problems in platelet transfusion. In processing platelet concentrates (PCs), several methods have been put into practice to minimize the risk of bacterial transmission, such as stringent monitoring by cultivation assays and inactivation treatment by photoirradiation with or without chemical agents. As another potential option, we applied a light-emitting diode (LED) with a peak emission wavelength of 265 nm, which has been shown to be effective for water, to disinfect PCs. In a bench-scale UV-LED exposure setup, a 10-min irradiation, corresponding to an average fluence of 9.2 mJ/cm2, resulted in >2.0 log, 1.0 log, and 0.6 log inactivation (mean, n = 6) of Escherichia coli, Staphylococcus aureus, and Bacillus cereus, respectively, in non-diluted plasma PCs. After a 30-min exposure, platelet counts decreased slightly (18 ± 7%: mean ± SD, n = 7); however, platelet surface expressions of CD42b, CD61, CD62P, and PAC-1 binding did not change significantly (P>0.005), and agonist-induced aggregation and adhesion/aggregation under flow conditions were well maintained. Our findings indicated that the 265 nm UV-LED has high potential as a novel disinfection method to ensure the microbial safety of platelet transfusion
    corecore