163 research outputs found

    Dynamical approach to spectator fragmentation in Au+Au reactions at 35 MeV/A

    Full text link
    The characteristics of fragment emission in peripheral 197^{197}Au+197^{197}Au collisions 35 MeV/A are studied using the two clusterization approaches within framework of \emph{quantum molecular dynamics} model. Our model calculations using \emph{minimum spanning tree} (MST) algorithm and advanced clusterization method namely \emph{simulated annealing clusterization algorithm} (SACA) showed that fragment structure can be realized at an earlier time when spectators contribute significantly toward the fragment production even at such a low incident energy. Comparison of model predictions with experimental data reveals that SACA method can nicely reproduce the fragment charge yields and mean charge of the heaviest fragment. This reflects suitability of SACA method over conventional clusterization techniques to investigate spectator matter fragmentation in low energy domain.Comment: 6 pages, 5 figures, accepte

    False negative results from using common PCR reagents

    Get PDF
    Background\ud The sensitivity of the PCR reaction makes it ideal for use when identifying potentially novel viral infections in human disease. Unfortunately, this same sensitivity also leaves this popular technique open to potential contamination with previously amplified PCR products, or "carry-over" contamination. PCR product carry-over contamination can be prevented with uracil-DNA-glycosylase (UNG), and it is for this reason that it is commonly included in many commercial PCR master-mixes. While testing the sensitivity of PCR assays to detect murine DNA contamination in human tissue samples, we inadvertently discovered that the use of this common PCR reagent may lead to the production of false-negative PCR results.\ud \ud Findings\ud We show here that contamination with minute quantities of UNG-digested PCR product or any negative control PCR reactions containing primer-dimers regardless of UNG presence can completely block amplification from as much as 60 ng of legitimate target DNA.\ud \ud Conclusions\ud These findings could potentially explain discrepant results from laboratories attempting to amplify MLV-related viruses including XMRV from human samples, as none of the published reports used internal-tube controls for amplification. The potential for false negative results needs to be considered and carefully controlled in PCR experiments, especially when the target copy number may be low - just as the potential for false positive results already is

    Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles

    Get PDF
    BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection

    Secretory granule neuroendocrine protein 1 (SGNE1) genetic variation and glucose intolerance in severe childhood and adult obesity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>7B2 is a regulator/activator of the prohormone convertase 2 which is involved in the processing of numerous neuropeptides, including insulin, glucagon and pro-opiomelanocortin. We have previously described a suggestive genetic linkage peak with childhood obesity on chr15q12-q14, where the 7B2 encoding gene, <it>SGNE1 </it>is located. The aim of this study is to analyze associations of <it>SGNE1 </it>genetic variation with obesity and metabolism related quantitative traits.</p> <p>Methods</p> <p>We screened <it>SGNE1 </it>for genetic variants in obese children and genotyped 12 frequent single nucleotide polymorphisms (SNPs). Case control analyses were performed in 1,229 obese (534 children and 695 adults), 1,535 individuals with type 2 diabetes and 1,363 controls, all French Caucasians. We also studied 4,922 participants from the D.E.S.I.R prospective population-based cohort.</p> <p>Results</p> <p>We did not find any association between <it>SGNE1 </it>SNPs and childhood or adult obesity. However, the 5' region SNP -1,701A>G associated with higher area under glucose curve after oral glucose tolerance test (p = 0.0005), higher HOMA-IR (p = 0.005) and lower insulinogenic index (p = 0.0003) in obese children. Similar trends were found in obese adults. SNP -1,701A>G did not associate with risk of T2D but tends to associate with incidence of type 2 diabetes (HR = 0.75 95%CI [0.55–1.01]; p = 0.06) in the prospective cohort.</p> <p>Conclusion</p> <p><it>SGNE1 </it>genetic variation does not contribute to obesity and common forms of T2D but may worsen glucose intolerance and insulin resistance, especially in the background of severe and early onset obesity. Further molecular studies are required to understand the molecular bases involved in this process.</p

    Detection of Murine Leukemia Virus or Mouse DNA in Commercial RT-PCR Reagents and Human DNAs

    Get PDF
    The xenotropic murine leukemia virus (MLV)-related viruses (XMRV) have been reported in persons with prostate cancer, chronic fatigue syndrome, and less frequently in blood donors. Polytropic MLVs have also been described in persons with CFS and blood donors. However, many studies have failed to confirm these findings, raising the possibility of contamination as a source of the positive results. One PCR reagent, Platinum Taq polymerase (pol) has been reported to contain mouse DNA that produces false-positive MLV PCR results. We report here the finding of a large number of PCR reagents that have low levels of MLV sequences. We found that recombinant reverse-transcriptase (RT) enzymes from six companies derived from either MLV or avian myeloblastosis virus contained MLV pol DNA sequences but not gag or mouse DNA sequences. Sequence and phylogenetic analysis showed high relatedness to Moloney MLV, suggesting residual contamination with an RT-containing plasmid. In addition, we identified contamination with mouse DNA and a variety of MLV sequences in commercially available human DNAs from leukocytes, brain tissues, and cell lines. These results identify new sources of MLV contamination and highlight the importance of careful pre-screening of commercial specimens and diagnostic reagents to avoid false-positive MLV PCR results

    Circadian Modulation of Gene Expression, but not Glutamate Uptake, in Mouse and Rat Cortical Astrocytes

    Get PDF
    Circadian clocks control daily rhythms including sleep-wake, hormone secretion, and metabolism. These clocks are based on intracellular transcription-translation feedback loops that sustain daily oscillations of gene expression in many cell types. Mammalian astrocytes display circadian rhythms in the expression of the clock genes Period1 (Per1) and Period2 (Per2). However, a functional role for circadian oscillations in astrocytes is unknown. Because uptake of extrasynaptic glutamate depends on the presence of Per2 in astrocytes, we asked whether glutamate uptake by glia is circadian.We measured glutamate uptake, transcript and protein levels of the astrocyte-specific glutamate transporter, Glast, and the expression of Per1 and Per2 from cultured cortical astrocytes and from explants of somatosensory cortex. We found that glutamate uptake and Glast mRNA and protein expression were significantly reduced in Clock/Clock, Per2- or NPAS2-deficient glia. Uptake was augmented when the medium was supplemented with dibutyryl-cAMP or B27. Critically, glutamate uptake was not circadian in cortical astrocytes cultured from rats or mice or in cortical slices from mice.We conclude that glutamate uptake levels are modulated by CLOCK, PER2, NPAS2, and the composition of the culture medium, and that uptake does not show circadian variations

    No Evidence of Murine Leukemia Virus-Related Viruses in Live Attenuated Human Vaccines

    Get PDF
    The association of xenotropic murine leukemia virus (MLV)-related virus (XMRV) in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents.All eight live attenuated vaccines, including Japanese encephalitis virus (JEV) (SA-14-14-2), varicella (Varivax), measles, mumps, and rubella (MMR-II), measles (Attenuvax), rubella (Meruvax-II), rotavirus (Rotateq and Rotarix), and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells.We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans

    S9, a Novel Anticancer Agent, Exerts Its Anti-Proliferative Activity by Interfering with Both PI3K-Akt-mTOR Signaling and Microtubule Cytoskeleton

    Get PDF
    BACKGROUND: Deregulation of the phosphatidylinositol 3-kinases (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway plays a central role in tumor formation and progression, providing validated targets for cancer therapy. S9, a hybrid of alpha-methylene-gamma-lactone and 2-phenyl indole compound, possessed potent activity against this pathway. METHODOLOGY/PRINCIPAL FINDINGS: Effects of S9 on PI3K-Akt-mTOR pathway were determined by Western blot, immunofluorescence staining and in vitro kinas assay. The interactions between tubulin and S9 were investigated by polymerization assay, CD, and SPR assay. The potential binding modes between S9 and PI3K, mTOR or tubulin were analyzed by molecular modeling. Anti-tumor activity of S9 was evaluated in tumor cells and in nude mice bearing human cancer xenografts. S9 abrogated EGF-activated PI3K-Akt-mTOR signaling cascade and Akt translocation to cellular membrane in human tumor cells. S9 possessed inhibitory activity against both PI3K and mTOR with little effect on other tested 30 kinases. S9 also completely impeded hyper-phosphorylation of Akt as a feedback of inhibition of mTOR by rapamycin. S9 unexpectedly arrested cells in M phase other than G1 phase, which was distinct from compounds targeting PI3K-Akt-mTOR pathway. Further study revealed that S9 inhibited tubulin polymerization via binding to colchicine-binding site of tubulin and resulted in microtubule disturbance. Molecular modeling indicated that S9 could potentially bind to the kinase domains of PI3K p110alpha subunit and mTOR, and shared similar hydrophobic interactions with colchicines in the complex with tubulin. Moreover, S9 induced rapid apoptosis in tumor cell, which might reflect a synergistic cooperation between blockade of both PI3-Akt-mTOR signaling and tubulin cytoskeleton. Finally, S9 displayed potent antiproliferative activity in a panel of tumor cells originated from different tissue types including drug-resistant cells and in nude mice bearing human tumor xenografts. CONCLUSIONS/SIGNIFICANCE: Taken together, S9 targets both PI3K-Akt-mTOR signaling and microtubule cytoskeleton, which combinatorially contributes its antitumor activity and provides new clues for anticancer drug design and development

    Proteome analysis of human gastric cardia adenocarcinoma by laser capture microdissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of gastric cardiac adenocarcinoma (GCA) has been increasing in the past two decades in China, but the molecular changes relating to carcinogenesis have not been well characterised.</p> <p>Methods</p> <p>In this study, we used a comparative proteomic approach to analyse the malignant and nonmalignant gastric cardia epithelial cells isolated by navigated laser capture microdissection (LCM) from paired surgical specimens of human GCA.</p> <p>Results</p> <p>Twenty-seven spots corresponding to 23 proteins were consistently differentially regulated. Fifteen proteins were shown to be up-regulated, while eight proteins were shown to be down-regulated in malignant cells compared with nonmalignant columnar epithelial cells. The identified proteins appeared to be involved in metabolism, chaperone, antioxidation, signal transduction, apoptosis, cell proliferation, and differentiation. In addition, expressions of HSP27, 60, and Prx-2 in GCA specimens were further confirmed by immunohistochemical and western blot analyses.</p> <p>Conclusion</p> <p>These data indicate that the combination of navigated LCM with 2-DE provides an effective strategy for discovering proteins that are differentially expressed in GCA. Such proteins may contribute in elucidating the molecular mechanisms of GCA carcinogenesis. Furthermore, the combination provides potential clinical biomarkers that aid in early detection and provide potential therapeutic targets.</p

    Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells

    Get PDF
    In this review we start with a historical perspective beginning with the early morphological work done almost 50 years ago. The importance of these pioneering studies is underscored by our brief summary of the key questions addressed by subsequent research into the mechanism of secretion. We then highlight important advances in our understanding of the formation and maturation of neuroendocrine secretory granules, first using in vitro reconstitution systems, then most recently biochemical approaches, and finally genetic manipulations in vitro and in vivo
    corecore