12,057 research outputs found

    Strong coupling theory of the spinless charges on the triangular lattices: possibility of a new quantum liquid

    Full text link
    We propose a new type of charge liquid state in the spinless fermion system on a triangular lattice under strong inter-site Coulomb interactions, VV. In the strong coupling limit (t=0t=0), the ground state is classical and disordered due to geometrical frustration. The introduction of small t will drive the system to a partially ordered phase which we call a "pinball liquid". A possibly long range ordered Wigner crystal solid coexist with a liquid component which are moving around them like a pinball. This liquid is dominant over wide range of filling, even away from the regular triangle, and is also realized in the hard core boson systems. Relevance to the organic theta-ET_2X is discsussed.Comment: 4pages, 7figure

    Spin Dynamics of Double-Exchange Manganites with Magnetic Frustration

    Full text link
    This work examines the effects of magnetic frustration due to competing ferromagnetic and antiferromagnetic Heisenberg interactions on the spin dynamics of the double-exchange model. When the local moments are non-colinear, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. With increasing hopping energy, the local spins become aligned and the average spin-wave stiffness increases. Phase separation is found only within a narrow range of hopping energies. Results of this work are applied to the field-induced jump in the spin-wave stiffness observed in the manganite Pr1x_{1-x}Cax_xMnO3_3 with 0.3x0.40.3 \le x \le 0.4.Comment: 10 pages, 3 figure

    Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2_2CoGe2_2O7_7

    Full text link
    We have investigated the variation of induced ferroelectric polarization under magnetic field with various directions and magnitudes in a staggered antiferromagnet Ba2_2CoGe2_2O7_7. While the ferroelectric polarization cannot be explained by the well-accepted spin current model nor exchange striction mechanism, we have shown that it is induced by the spin-dependent pp-dd hybridization between the transition-metal (Co) and ligand (O) via the spin-orbit interaction. On the basis of the correspondence between the direction of electric polarization and the magnetic state, we have also demonstrated the electrical control of the magnetization direction.Comment: 4 pages, 4 figure

    Quantum Monte Carlo study of the transverse-field Ising model on a frustrated checkerboard lattice

    Full text link
    We present the numerical results for low temperature behavior of the transverse-field Ising model on a frustrated checkerboard lattice, with focus on the effect of both quantum and thermal fluctuations. Applying the recently-developed continuous-time quantum Monte Carlo algorithm, we compute the magnetization and susceptibility down to extremely low temperatures while changing the magnitude of both transverse and longitudinal magnetic fields. Several characteristic behaviors are observed, which were not inferred from the previously studied quantum order from disorder at zero temperature, such as a horizontal-type stripe ordering at a substantial longitudinal field and a persistent critical behavior down to low temperature in a weak longitudinal field region.Comment: 6 pages, 5 figures, accepted for publication in J. Phys.: Conf. Se

    Competition between unconventional superconductivity and incommensurate antiferromagnetic order in CeRh1-xCoxIn5

    Full text link
    Elastic neutron diffraction measurements were performed on the quasi-two dimensional heavy fermion system CeRh1-xCoxIn5, ranging from an incommensurate antiferromagnet for low x to an unconventional superconductor on the Co-rich end of the phase diagram. We found that the superconductivity competes with the incommensurate antiferromagnetic (AFM) order characterized by qI=(1/2, 1/2, delta) with delta=0.298, while it coexists with the commensurate AFM order with qc=(1/2, 1/2, 1/2). This is in sharp contrast to the CeRh1-xIrxIn5 system, where both the commensurate and incommensurate magnetic orders coexist with the superconductivity. These results reveal that particular areas on the Fermi surface nested by qI play an active role in forming the superconducting state in CeCoIn5.Comment: RevTeX4, 4 pages, 4 eps figures; corrected a typo and a referenc

    High-Tc Nodeless s_\pm-wave Superconductivity in (Y,La)FeAsO_{1-y} with Tc=50 K: 75As-NMR Study

    Full text link
    We report 75As-NMR study on the Fe-pnictide high-Tc superconductor Y0.95La0.05FeAsO_{1-y} (Y0.95La0.051111) with Tc=50 K that includes no magnetic rare-earth elements. The measurement of the nuclear-spin lattice-relaxation rate 75(1/T1) has revealed that the nodeless bulk superconductivity takes place at Tc=50 K while antiferromagnetic spin fluctuations (AFSFs) develop moderately in the normal state. These features are consistently described by the multiple fully-gapped s_\pm-wave model based on the Fermi-surface (FS) nesting. Incorporating the theory based on band calculations, we propose that the reason that Tc=50 K in Y0.95La0.051111 is larger than Tc=28 K in La1111 is that the FS multiplicity is maximized, and hence the FS nesting condition is better than that in La1111.Comment: 4 pages, 3 figures, accepted for publication in Phys Rev. Let

    Transport properties of diluted magnetic semiconductors: Dynamical mean field theory and Boltzmann theory

    Full text link
    The transport properties of diluted magnetic semiconductors (DMS) are calculated using dynamical mean field theory (DMFT) and Boltzmann transport theory. Within DMFT we study the density of states and the dc-resistivity, which are strongly parameter dependent such as temperature, doping, density of the carriers, and the strength of the carrier-local impurity spin exchange coupling. Characteristic qualitative features are found distinguishing weak, intermediate, and strong carrier-spin coupling and allowing quantitative determination of important parameters defining the underlying ferromagnetic mechanism. We find that spin-disorder scattering, formation of bound state, and the population of the minority spin band are all operational in DMFT in different parameter range. We also develop a complementary Boltzmann transport theory for scattering by screened ionized impurities. The difference in the screening properties between paramagnetic (T>TcT>T_c) and ferromagnetic (T<TcT<T_c) states gives rise to the temperature dependence (increase or decrease) of resistivity, depending on the carrier density, as the system goes from the paramagnetic phase to the ferromagnetic phase. The metallic behavior below TcT_c for optimally doped DMS samples can be explained in the Boltzmann theory by temperature dependent screening and thermal change of carrier spin polarization.Comment: 15 pages, 15 figure

    Donor procurement for intestinal transplantation

    Get PDF

    Spin Excitation Spectrum of La1xAx_{1-x}A_xMnO3_3

    Full text link
    As an effective model to describe perovskite-type manganates (La,AA)MnO3_3, the double-exchange model on a cubic lattice is investigated. Spin excitation spectrum of the model in the ground state is studied using the spin wave approximation. Spin wave dispersion relation observed in the inelastic neutron scattering experiment of La0.7_{0.7}Pb0.3_{0.3}MnO3_3 is reproduced. Effective values for the electron bandwidth as well as Hund's coupling is estimated from the data.Comment: 10 pages LaTeX including 4 PS figure
    corecore