48 research outputs found

    Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify <it>N</it>-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using <it>in vitro </it>patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using <it>in vivo </it>patch-clamp method.</p> <p>Results</p> <p><it>In vitro</it>, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. <it>In vivo</it>, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist.</p> <p>Conclusions</p> <p>Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn <it>via </it>a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon.</p

    Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic bone cancer pain is thought to be partly due to central sensitization. Although murine models of bone cancer pain revealed significant neurochemical changes in the spinal cord, it is not known whether this produces functional alterations in spinal sensory synaptic transmission. In this study, we examined excitatory synaptic responses evoked in substantia gelatinosa (SG, lamina II) neurons in spinal cord slices of adult mice bearing bone cancer, using whole-cell voltage-clamp recording techniques.</p> <p>Results</p> <p>Mice at 14 to 21 days after sarcoma implantation into the femur exhibited hyperalgesia to mechanical stimuli applied to the skin of the ipsilateral hind paw, as well as showing spontaneous and movement evoked pain-related behaviors. SG neurons exhibited spontaneous excitatory postsynaptic currents (EPSCs). The amplitudes of spontaneous EPSCs were significantly larger in cancer-bearing than control mice without any changes in passive membrane properties of SG neurons. In the presence of TTX, the amplitude of miniature EPSCs in SG neurons was increased in cancer-bearing mice and this was observed for cells sampled across a wide range of lumbar segmental levels. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor- and <it>N</it>-methyl-<it>D</it>-aspartate (NMDA) receptor-mediated EPSCs evoked by focal stimulation were also enhanced in cancer-bearing mice. Dorsal root stimulation elicited mono- and/or polysynaptic EPSCs that were caused by the activation of Aδ and/or C afferent fibers in SG neurons from both groups of animals. The number of cells receiving monosynaptic inputs from Aδ and C fibers was not different between the two groups. However, the amplitude of the monosynaptic C fiber-evoked EPSCs and the number of SG neurons receiving polysynaptic inputs from Aδ and C fibers were increased in cancer-bearing mice.</p> <p>Conclusions</p> <p>These results show that spinal synaptic transmission mediated through Aδ and C fibers is enhanced in the SG across a wide area of lumbar levels following sarcoma implantation in the femur. This widespread spinal sensitization may be one of the underlying mechanisms for the development of chronic bone cancer pain.</p

    Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation

    Get PDF
    Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer) are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs) generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG) preparations using intracellular recordings. We also measured excitatory synaptic responses evoked by transcutaneous stimuli in substantia gelatinosa (SG) neurons of the spinal dorsal horn, which receive inputs predominantly from C and Aδ fibers, using in vivo patch-clamp recordings. In behavioral studies, escape or vocalization behavior of rats was observed with both 250 and 5 Hz stimuli at intensity of ~0.8 mA (T5/ T250), whereas with 2000 Hz stimulation, much higher intensity (2.14 mA, T2000) was required. In DRG neurons, APs were generated at T5/T250 by 2000 Hz stimulation in Aβ, by 250 Hz stimulation both in Aβ and Aδ, and by 5 Hz stimulation in all three classes of DRG neurons. However, the AP frequencies elicited in Aβ and Aδ by 5 Hz stimulation were much less than those reported previously in physiological condition. With in vivo experiments large amplitude of EPSCs in SG neurons were elicited by 250 and 5 Hz stimuli at T5/ T250. These results suggest that 2000 Hz stimulation excites selectively Aβ fibers and 5 Hz stimulation activates noxious transmission mediated mainly through C fibers. Although 250 Hz stimulation activates both Aδ and Aβ fibers, tactile sensation would not be perceived when painful sensation is produced at the same time. Therefore, 250 Hz was effective stimulus frequency for activation of Aδ fibers initiating noxious sensation. Thus, the transcutaneous sine-wave stimulation can be applied to evaluate functional changes of sensory transmission by comparing thresholds with the three stimulus frequencies

    Systemic dexmedetomidine augments inhibitory synaptic transmission in the superficial dorsal horn through activation of descending noradrenergic control:An in vivo patch-clamp analysis of analgesic mechanisms

    Get PDF
    α(2)-adrenoceptors are widely distributed throughout the central nervous system (CNS) and the systemic administration of α(2)-agonists such as dexmedetomidine produces clinically useful, centrally-mediated sedation and analgesia; however, these same actions also limit the utility of these agents (ie unwanted sedative actions). Despite a wealth of data on cellular and synaptic actions of α(2)-agonists in vitro, it is not known which neuronal circuits are modulated in vivo to produce the analgesic effect. To address this issue, we made in vivo recordings of membrane currents and synaptic activities in superficial spinal dorsal horn neurons and examined their responses to systemic dexmedetomidine. We found that dexmedetomidine at doses that produce analgesia (<10 μg/kg) enhanced inhibitory postsynaptic transmission within the superficial dorsal horn without altering excitatory synaptic transmission or evoking direct postsynaptic membrane currents. In contrast, higher doses of dexmedetomidine (>10 μg/kg) induced outward currents by a direct postsynaptic action. The dexmedetomidine-mediated inhibitory postsynaptic current (IPSC) facilitation was not mimicked by spinal application of dexmedetomidine and was absent in spinalized rats, suggesting it acts at a supraspinal site. Further it was inhibited by spinal application of the α(1)-antagonist prazosin. In the brain stem, low doses of systemic dexmedetomidine produced an excitation of locus coeruleus neurons. These results suggest that systemic α(2)-adrenoceptor stimulation may facilitate inhibitory synaptic responses in the superficial dorsal horn to produce analgesia mediated by activation of the pontospinal noradrenergic inhibitory system. This novel mechanism may provide new targets for intervention perhaps allowing analgesic actions to be dissociated from excessive sedation

    Optoactivation of locus ceruleus neurons evokes bidirectional changes in thermal nociception in rats

    Get PDF
    International audiencePontospinal noradrenergic neurons are thought to form part of a descending endogenous analgesic system that exerts inhibitory influences on spinal nociception. Using optogenetic targeting, we tested the hypothesis that excitation of the locus ceruleus (LC) is antinociceptive. We transduced rat LC neurons by direct injection of a lentiviral vector expressing channelrhodopsin2 under the control of the PRS promoter. Subsequent optoactivation of the LC evoked repeatable, robust, antinociceptive (-4.7 degrees C +/- 1.0, p < 0.0001) or pronociceptive (-4.4 degrees C +/- 0.7, p < 0.0001) changes in hindpaw thermal withdrawal thresholds. Post hoc anatomical characterization of the distribution of transduced somata referenced against the position of the optical fiber and subsequent further functional analysis showed that antinociceptive actions were evoked from a distinct, ventral subpopulation of LC neurons. Therefore, the LC is capable of exerting potent, discrete, bidirectional influences on thermal nociception that are produced by specific subpopulations of noradrenergic neurons. This reflects an underlying functional heterogeneity of the influence of the LC on the processing of nociceptive information

    Responsiveness of C neurons in rat dorsal root ganglion to 5-hydroxytryptamine-induced pruritic stimuli in vivo

    No full text
    Itching is a common symptom in dermatologic diseases and causes restless scratching of the skin, which aggravates the condition. The mechanism of the itch sensation, however, is enigmatic. The present study included behavioral tests and electrophysiological recordings from rat dorsal root ganglion (DRG) neurons in vivo to analyze the response to pruritic stimuli induced by topical application of 5-hydroxytryptamine (5-HT) to the skin. Topically applied 5-HT to the rostral back evoked scratching, whereas application of the vehicle did not. Following subcutaneous injection of the opioid receptor antagonist naloxone, the number of scratches decreased, suggesting that the scratching was preferentially mediated by itch but not pain sensation. To elucidate the firing properties of DRG neurons in response to topically applied 5-HT, intracellular recordings were made from DRG neurons in vivo. None of the Aβ and Aδ neurons responded to 5-HT; in contrast, 25 of 91 C neurons (27%) exhibited repetitive firing in response to 5-HT, which could be classified into two firing patterns: one was a transient type, characterized by low firing frequency that decreased within 5 min; the other was a long-lasting type, having high firing frequency that continued increasing after 5 min. The time course of the firing pattern of long-lasting C neurons was comparable to the scratching behavior. Intriguingly, the long-lasting-type neurons had a significantly smaller fast afterhyperpolarization than that of the 5-HT-insensitive neurons. These observations suggest that the long-lasting-firing C neurons in rat DRG sensitive to 5-HT are responsible for conveying pruritic information to the spinal cord

    Methods for in vivo patch-clamp recordings and its applications:

    No full text

    Characterization of Nociceptive Behaviors Induced by Formalin in the Glabrous and Hairy Skin of Rats

    No full text
    Introduction: Glabrous skin and hairy skin are innervated by different types of noxious fibers. However, the different nociceptive behaviors induced by formalin, a commonly used model of acute inflammatory pain, have not yet been systematically examined in the glabrous and hairy skin. Methods: In this study, we compared nociceptive behaviors induced by formalin injections (2%, 4%, and 8%) into either glabrous skin (plantar surface) of the hind paw or hairy skin of the hin limb in adult rats. Results: A typical biphasic nociceptive response was seen after formalin injection into the plantar surface of the hind paw. A brief interphase separates the first and second phases where nociceptive behaviors were barely spotted. However, following subcutaneous injection into the hairy skin nociceptive behaviors were only seen after 10 minutes of formalin injection, which correlates in time with the second phase of the formalin response. First phase nociceptive behaviors were never seen with hairy skin injection, even following multiple injections of formalin. Conclusion: These data suggest that nociceptive behaviors and spinal responses induced by formalin injections to glabrous and hairy skin areas are different, and that the first and second phases may be mediated through different noxious afferent fibers
    corecore