681 research outputs found

    Do We Invest Less Time in Children? Trends in Parental Time in Selected Industrialized Countries Since the 1960\u27s

    Get PDF
    This paper examines trends in parental time in selected industrialized countries since the 1960s using time-use survey data. Despite the time pressures to which today’s families are confronted, parents appear to be devoting more time to children than they did some 40 years ago. Results also suggest a decrease in the differences between fathers and mothers in time devoted to children. Mothers continue to devote more time to childcare than fathers, but the gender gap has been reduced. These results are observed in several countries and therefore suggest a large global trend towards an increase in parental time investment with their children

    Localization of elastic waves in heterogeneous media with off-diagonal disorder and long-range correlations

    Full text link
    Using the Martin-Siggia-Rose method, we study propagation of acoustic waves in strongly heterogeneous media which are characterized by a broad distribution of the elastic constants. Gaussian-white distributed elastic constants, as well as those with long-range correlations with non-decaying power-law correlation functions, are considered. The study is motivated in part by a recent discovery that the elastic moduli of rock at large length scales may be characterized by long-range power-law correlation functions. Depending on the disorder, the renormalization group (RG) flows exhibit a transition to localized regime in {\it any} dimension. We have numerically checked the RG results using the transfer-matrix method and direct numerical simulations for one- and two-dimensional systems, respectively.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Generic Continuous Spectrum for Ergodic Schr"odinger Operators

    Full text link
    We consider discrete Schr"odinger operators on the line with potentials generated by a minimal homeomorphism on a compact metric space and a continuous sampling function. We introduce the concepts of topological and metric repetition property. Assuming that the underlying dynamical system satisfies one of these repetition properties, we show using Gordon's Lemma that for a generic continuous sampling function, the associated Schr"odinger operators have no eigenvalues in a topological or metric sense, respectively. We present a number of applications, particularly to shifts and skew-shifts on the torus.Comment: 14 page

    Selfsimilarity and growth in Birkhoff sums for the golden rotation

    Full text link
    We study Birkhoff sums S(k,a) = g(a)+g(2a)+...+g(ka) at the golden mean rotation number a with periodic continued fraction approximations p(n)/q(n), where g(x) = log(2-2 cos(2 pi x). The summation of such quantities with logarithmic singularity is motivated by critical KAM phenomena. We relate the boundedness of log- averaged Birkhoff sums S(k,a)/log(k) and the convergence of S(q(n),a) with the existence of an experimentally established limit function f(x) = lim S([x q(n)])(p(n+1)/q(n+1))-S([x q(n)])(p(n)/q(n)) for n to infinity on the interval [0,1]. The function f satisfies a functional equation f(ax) + (1-a) f(x)= b(x) with a monotone function b. The limit lim S(q(n),a) for n going to infinity can be expressed in terms of the function f.Comment: 14 pages, 8 figure

    Quenched Averages for self-avoiding walks and polygons on deterministic fractals

    Full text link
    We study rooted self avoiding polygons and self avoiding walks on deterministic fractal lattices of finite ramification index. Different sites on such lattices are not equivalent, and the number of rooted open walks W_n(S), and rooted self-avoiding polygons P_n(S) of n steps depend on the root S. We use exact recursion equations on the fractal to determine the generating functions for P_n(S), and W_n(S) for an arbitrary point S on the lattice. These are used to compute the averages ,,, , and <logWn(S)><log W_n(S)> over different positions of S. We find that the connectivity constant μ\mu, and the radius of gyration exponent ν\nu are the same for the annealed and quenched averages. However,  nlogμ+(αq2)logn ~ n log \mu + (\alpha_q -2) log n, and  nlogμ+(γq1)logn ~ n log \mu + (\gamma_q -1)log n, where the exponents αq\alpha_q and γq\gamma_q take values different from the annealed case. These are expressed as the Lyapunov exponents of random product of finite-dimensional matrices. For the 3-simplex lattice, our numerical estimation gives αq0.72837±0.00001 \alpha_q \simeq 0.72837 \pm 0.00001; and γq1.37501±0.00003\gamma_q \simeq 1.37501 \pm 0.00003, to be compared with the annealed values αa=0.73421\alpha_a = 0.73421 and γa=1.37522\gamma_a = 1.37522.Comment: 17 pages, 10 figures, submitted to Journal of Statistical Physic

    Recurrence in 2D Inviscid Channel Flow

    Full text link
    I will prove a recurrence theorem which says that any HsH^s (s>2s>2) solution to the 2D inviscid channel flow returns repeatedly to an arbitrarily small H0H^0 neighborhood. Periodic boundary condition is imposed along the stream-wise direction. The result is an extension of an early result of the author [Li, 09] on 2D Euler equation under periodic boundary conditions along both directions

    A Transfer Matrix for the Backbone Exponent of Two-Dimensional Percolation

    Full text link
    Rephrasing the backbone of two-dimensional percolation as a monochromatic path crossing problem, we investigate the latter by a transfer matrix approach. Conformal invariance links the backbone dimension D_b to the highest eigenvalue of the transfer matrix T, and we obtain the result D_b=1.6431 \pm 0.0006. For a strip of width L, T is roughly of size 2^{3^L}, but we manage to reduce it to \sim L!. We find that the value of D_b is stable with respect to inclusion of additional ``blobs'' tangent to the backbone in a finite number of points.Comment: 19 page

    Sixty Years of Fractal Projections

    Get PDF
    Sixty years ago, John Marstrand published a paper which, among other things, relates the Hausdorff dimension of a plane set to the dimensions of its orthogonal projections onto lines. For many years, the paper attracted very little attention. However, over the past 30 years, Marstrand's projection theorems have become the prototype for many results in fractal geometry with numerous variants and applications and they continue to motivate leading research.Comment: Submitted to proceedings of Fractals and Stochastics
    corecore