5 research outputs found

    {Search for direct production of GeV-scale resonances decaying to a pair of muons in proton-proton collisions at s \sqrt{s} = 13 TeV}

    No full text
    A search for direct production of low-mass dimuon resonances is performed using = 13 TeV proton-proton collision data collected by the CMS experiment during the 2017–2018 operation of the CERN LHC with an integrated luminosity of 96.6 fb−1. The search exploits a dedicated high-rate trigger stream that records events with two muons with transverse momenta as low as 3 GeV but does not include the full event information. The search is performed by looking for narrow peaks in the dimuon mass spectrum in the ranges of 1.1–2.6 GeV and 4.2–7.9 GeV. No significant excess of events above the expectation from the standard model background is observed. Model-independent limits on production rates of dimuon resonances within the experimental fiducial acceptance are set. Competitive or world’s best limits are set at 90% confidence level for a minimal dark photon model and for a scenario with two Higgs doublets and an extra complex scalar singlet (2HDM+S). Values of the squared kinetic mixing coefficient ε2 in the dark photon model above 10−6 are excluded over most of the mass range of the search. In the 2HDM+S, values of the mixing angle sin(θH) above 0.08 are excluded over most of the mass range of the search with a fixed ratio of the Higgs doublets vacuum expectation tan β = 0.5

    Towards quantification of Holocene anthropogenic land-cover change in temperate China: A review in the light of pollen-based REVEALS reconstructions of regional plant cover

    No full text
    In an attempt to quantify Holocene anthropogenic land-cover change in temperate China, we 1) applied the REVEALS model to estimate plant-cover change using 94 pollen records and relative pollen productivity for 27 plant taxa, 2) reviewed earlier interpretation of pollen studies in terms of climate- and human-induced vegetation change, and 3) reviewed information on past land use from archaeological studies. REVEALS achieved a more realistic reconstruction of plant-cover change than pollen percentages in terms of openland versus woodland. The study suggests successive human-induced changes in vegetation cover. The first signs of human- induced land-cover change (crop cultivation, otherwise specified) are found c. 7 ka BP in the temperate deciduous forest, and S and NE Tibetan Plateau (mainly grazing, possibly crop cultivation), 6.5–6 ka BP in the temperate steppe and temperate desert (grazing, uncertain), and 5.5–5 ka BP in the coniferous-deciduous mixed forest, NE subtropical region, and NW Tibetan Plateau (grazing). Further intensification of anthropogenic land-cover change is indicated 5–4.5 ka BP in the E temperate steppe, and S and NE Tibetan Plateau (grazing, cultivation uncertain), 3.5–3 ka BP in S and NE Tibetan Plateau, W temperate steppe, temperate desert (grazing), and NW Tibetan Plateau (probably grazing), and 2.5–2 ka BP in the temperate deciduous forest, N subtropical region, and temperate desert (grazing). These changes generally agree with increased human activity as documented by archaeological studies. REVEALS reconstructions have a stronger potential than biomization to evaluate scenarios of anthropogenic land-cover change such as HYDE, given they are combined with information from archaeological studies
    corecore